You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
calculate-overlay/profiles/templates/3.6/6_ac_install_patch/sys-kernel/calculate-sources/5.1/4501_muqss.patch

10696 lines
304 KiB

# Calculate format=diff os_linux_system==desktop merge(sys-kernel/calculate-sources[muqss])!=
From 7a1d33351c90fc61644878beb736ffbfb4e95f5a Mon Sep 17 00:00:00 2001
From: Con Kolivas <kernel@kolivas.org>
Date: Wed, 15 May 2019 15:12:54 +1000
Subject: [PATCH 01/16] MultiQueue Skiplist Scheduler version 0.190
---
.../admin-guide/kernel-parameters.txt | 8 +
Documentation/scheduler/sched-BFS.txt | 351 +
Documentation/scheduler/sched-MuQSS.txt | 373 +
Documentation/sysctl/kernel.txt | 37 +
arch/alpha/Kconfig | 2 +
arch/arm/Kconfig | 2 +
arch/arm64/Kconfig | 2 +
arch/powerpc/Kconfig | 2 +
arch/powerpc/platforms/cell/spufs/sched.c | 5 -
arch/x86/Kconfig | 18 +
fs/proc/base.c | 2 +-
include/linux/init_task.h | 4 +
include/linux/ioprio.h | 2 +
include/linux/sched.h | 60 +-
include/linux/sched/nohz.h | 4 +-
include/linux/sched/prio.h | 12 +
include/linux/sched/rt.h | 2 +
include/linux/sched/task.h | 2 +-
include/linux/skip_list.h | 33 +
include/uapi/linux/sched.h | 9 +-
init/Kconfig | 23 +-
init/init_task.c | 10 +
init/main.c | 2 +
kernel/Kconfig.MuQSS | 89 +
kernel/Makefile | 2 +-
kernel/delayacct.c | 2 +-
kernel/exit.c | 4 +-
kernel/kthread.c | 30 +-
kernel/livepatch/transition.c | 6 +-
kernel/sched/Makefile | 10 +-
kernel/sched/MuQSS.c | 7496 +++++++++++++++++
kernel/sched/MuQSS.h | 957 +++
kernel/sched/cpufreq_schedutil.c | 12 +-
kernel/sched/cpupri.h | 2 +
kernel/sched/cputime.c | 22 +-
kernel/sched/idle.c | 12 +-
kernel/sched/sched.h | 40 +
kernel/sched/topology.c | 8 +
kernel/skip_list.c | 148 +
kernel/sysctl.c | 52 +-
kernel/time/clockevents.c | 5 +
kernel/time/posix-cpu-timers.c | 8 +-
kernel/time/timer.c | 7 +-
kernel/trace/trace_selftest.c | 5 +
44 files changed, 9827 insertions(+), 55 deletions(-)
create mode 100644 Documentation/scheduler/sched-BFS.txt
create mode 100644 Documentation/scheduler/sched-MuQSS.txt
create mode 100644 include/linux/skip_list.h
create mode 100644 kernel/Kconfig.MuQSS
create mode 100644 kernel/sched/MuQSS.c
create mode 100644 kernel/sched/MuQSS.h
create mode 100644 kernel/skip_list.c
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 2b8ee90bb644..16c428c5e23a 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -4094,6 +4094,14 @@
Memory area to be used by remote processor image,
managed by CMA.
+ rqshare= [X86] Select the MuQSS scheduler runqueue sharing type.
+ Format: <string>
+ smt -- Share SMT (hyperthread) sibling runqueues
+ mc -- Share MC (multicore) sibling runqueues
+ smp -- Share SMP runqueues
+ none -- So not share any runqueues
+ Default value is mc
+
rw [KNL] Mount root device read-write on boot
S [KNL] Run init in single mode
diff --git a/Documentation/scheduler/sched-BFS.txt b/Documentation/scheduler/sched-BFS.txt
new file mode 100644
index 000000000000..c0282002a079
--- /dev/null
+++ b/Documentation/scheduler/sched-BFS.txt
@@ -0,0 +1,351 @@
+BFS - The Brain Fuck Scheduler by Con Kolivas.
+
+Goals.
+
+The goal of the Brain Fuck Scheduler, referred to as BFS from here on, is to
+completely do away with the complex designs of the past for the cpu process
+scheduler and instead implement one that is very simple in basic design.
+The main focus of BFS is to achieve excellent desktop interactivity and
+responsiveness without heuristics and tuning knobs that are difficult to
+understand, impossible to model and predict the effect of, and when tuned to
+one workload cause massive detriment to another.
+
+
+Design summary.
+
+BFS is best described as a single runqueue, O(n) lookup, earliest effective
+virtual deadline first design, loosely based on EEVDF (earliest eligible virtual
+deadline first) and my previous Staircase Deadline scheduler. Each component
+shall be described in order to understand the significance of, and reasoning for
+it. The codebase when the first stable version was released was approximately
+9000 lines less code than the existing mainline linux kernel scheduler (in
+2.6.31). This does not even take into account the removal of documentation and
+the cgroups code that is not used.
+
+Design reasoning.
+
+The single runqueue refers to the queued but not running processes for the
+entire system, regardless of the number of CPUs. The reason for going back to
+a single runqueue design is that once multiple runqueues are introduced,
+per-CPU or otherwise, there will be complex interactions as each runqueue will
+be responsible for the scheduling latency and fairness of the tasks only on its
+own runqueue, and to achieve fairness and low latency across multiple CPUs, any
+advantage in throughput of having CPU local tasks causes other disadvantages.
+This is due to requiring a very complex balancing system to at best achieve some
+semblance of fairness across CPUs and can only maintain relatively low latency
+for tasks bound to the same CPUs, not across them. To increase said fairness
+and latency across CPUs, the advantage of local runqueue locking, which makes
+for better scalability, is lost due to having to grab multiple locks.
+
+A significant feature of BFS is that all accounting is done purely based on CPU
+used and nowhere is sleep time used in any way to determine entitlement or
+interactivity. Interactivity "estimators" that use some kind of sleep/run
+algorithm are doomed to fail to detect all interactive tasks, and to falsely tag
+tasks that aren't interactive as being so. The reason for this is that it is
+close to impossible to determine that when a task is sleeping, whether it is
+doing it voluntarily, as in a userspace application waiting for input in the
+form of a mouse click or otherwise, or involuntarily, because it is waiting for
+another thread, process, I/O, kernel activity or whatever. Thus, such an
+estimator will introduce corner cases, and more heuristics will be required to
+cope with those corner cases, introducing more corner cases and failed
+interactivity detection and so on. Interactivity in BFS is built into the design
+by virtue of the fact that tasks that are waking up have not used up their quota
+of CPU time, and have earlier effective deadlines, thereby making it very likely
+they will preempt any CPU bound task of equivalent nice level. See below for
+more information on the virtual deadline mechanism. Even if they do not preempt
+a running task, because the rr interval is guaranteed to have a bound upper
+limit on how long a task will wait for, it will be scheduled within a timeframe
+that will not cause visible interface jitter.
+
+
+Design details.
+
+Task insertion.
+
+BFS inserts tasks into each relevant queue as an O(1) insertion into a double
+linked list. On insertion, *every* running queue is checked to see if the newly
+queued task can run on any idle queue, or preempt the lowest running task on the
+system. This is how the cross-CPU scheduling of BFS achieves significantly lower
+latency per extra CPU the system has. In this case the lookup is, in the worst
+case scenario, O(n) where n is the number of CPUs on the system.
+
+Data protection.
+
+BFS has one single lock protecting the process local data of every task in the
+global queue. Thus every insertion, removal and modification of task data in the
+global runqueue needs to grab the global lock. However, once a task is taken by
+a CPU, the CPU has its own local data copy of the running process' accounting
+information which only that CPU accesses and modifies (such as during a
+timer tick) thus allowing the accounting data to be updated lockless. Once a
+CPU has taken a task to run, it removes it from the global queue. Thus the
+global queue only ever has, at most,
+
+ (number of tasks requesting cpu time) - (number of logical CPUs) + 1
+
+tasks in the global queue. This value is relevant for the time taken to look up
+tasks during scheduling. This will increase if many tasks with CPU affinity set
+in their policy to limit which CPUs they're allowed to run on if they outnumber
+the number of CPUs. The +1 is because when rescheduling a task, the CPU's
+currently running task is put back on the queue. Lookup will be described after
+the virtual deadline mechanism is explained.
+
+Virtual deadline.
+
+The key to achieving low latency, scheduling fairness, and "nice level"
+distribution in BFS is entirely in the virtual deadline mechanism. The one
+tunable in BFS is the rr_interval, or "round robin interval". This is the
+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
+tasks of the same nice level will be running for, or looking at it the other
+way around, the longest duration two tasks of the same nice level will be
+delayed for. When a task requests cpu time, it is given a quota (time_slice)
+equal to the rr_interval and a virtual deadline. The virtual deadline is
+offset from the current time in jiffies by this equation:
+
+ jiffies + (prio_ratio * rr_interval)
+
+The prio_ratio is determined as a ratio compared to the baseline of nice -20
+and increases by 10% per nice level. The deadline is a virtual one only in that
+no guarantee is placed that a task will actually be scheduled by this time, but
+it is used to compare which task should go next. There are three components to
+how a task is next chosen. First is time_slice expiration. If a task runs out
+of its time_slice, it is descheduled, the time_slice is refilled, and the
+deadline reset to that formula above. Second is sleep, where a task no longer
+is requesting CPU for whatever reason. The time_slice and deadline are _not_
+adjusted in this case and are just carried over for when the task is next
+scheduled. Third is preemption, and that is when a newly waking task is deemed
+higher priority than a currently running task on any cpu by virtue of the fact
+that it has an earlier virtual deadline than the currently running task. The
+earlier deadline is the key to which task is next chosen for the first and
+second cases. Once a task is descheduled, it is put back on the queue, and an
+O(n) lookup of all queued-but-not-running tasks is done to determine which has
+the earliest deadline and that task is chosen to receive CPU next.
+
+The CPU proportion of different nice tasks works out to be approximately the
+
+ (prio_ratio difference)^2
+
+The reason it is squared is that a task's deadline does not change while it is
+running unless it runs out of time_slice. Thus, even if the time actually
+passes the deadline of another task that is queued, it will not get CPU time
+unless the current running task deschedules, and the time "base" (jiffies) is
+constantly moving.
+
+Task lookup.
+
+BFS has 103 priority queues. 100 of these are dedicated to the static priority
+of realtime tasks, and the remaining 3 are, in order of best to worst priority,
+SCHED_ISO (isochronous), SCHED_NORMAL, and SCHED_IDLEPRIO (idle priority
+scheduling). When a task of these priorities is queued, a bitmap of running
+priorities is set showing which of these priorities has tasks waiting for CPU
+time. When a CPU is made to reschedule, the lookup for the next task to get
+CPU time is performed in the following way:
+
+First the bitmap is checked to see what static priority tasks are queued. If
+any realtime priorities are found, the corresponding queue is checked and the
+first task listed there is taken (provided CPU affinity is suitable) and lookup
+is complete. If the priority corresponds to a SCHED_ISO task, they are also
+taken in FIFO order (as they behave like SCHED_RR). If the priority corresponds
+to either SCHED_NORMAL or SCHED_IDLEPRIO, then the lookup becomes O(n). At this
+stage, every task in the runlist that corresponds to that priority is checked
+to see which has the earliest set deadline, and (provided it has suitable CPU
+affinity) it is taken off the runqueue and given the CPU. If a task has an
+expired deadline, it is taken and the rest of the lookup aborted (as they are
+chosen in FIFO order).
+
+Thus, the lookup is O(n) in the worst case only, where n is as described
+earlier, as tasks may be chosen before the whole task list is looked over.
+
+
+Scalability.
+
+The major limitations of BFS will be that of scalability, as the separate
+runqueue designs will have less lock contention as the number of CPUs rises.
+However they do not scale linearly even with separate runqueues as multiple
+runqueues will need to be locked concurrently on such designs to be able to
+achieve fair CPU balancing, to try and achieve some sort of nice-level fairness
+across CPUs, and to achieve low enough latency for tasks on a busy CPU when
+other CPUs would be more suited. BFS has the advantage that it requires no
+balancing algorithm whatsoever, as balancing occurs by proxy simply because
+all CPUs draw off the global runqueue, in priority and deadline order. Despite
+the fact that scalability is _not_ the prime concern of BFS, it both shows very
+good scalability to smaller numbers of CPUs and is likely a more scalable design
+at these numbers of CPUs.
+
+It also has some very low overhead scalability features built into the design
+when it has been deemed their overhead is so marginal that they're worth adding.
+The first is the local copy of the running process' data to the CPU it's running
+on to allow that data to be updated lockless where possible. Then there is
+deference paid to the last CPU a task was running on, by trying that CPU first
+when looking for an idle CPU to use the next time it's scheduled. Finally there
+is the notion of cache locality beyond the last running CPU. The sched_domains
+information is used to determine the relative virtual "cache distance" that
+other CPUs have from the last CPU a task was running on. CPUs with shared
+caches, such as SMT siblings, or multicore CPUs with shared caches, are treated
+as cache local. CPUs without shared caches are treated as not cache local, and
+CPUs on different NUMA nodes are treated as very distant. This "relative cache
+distance" is used by modifying the virtual deadline value when doing lookups.
+Effectively, the deadline is unaltered between "cache local" CPUs, doubled for
+"cache distant" CPUs, and quadrupled for "very distant" CPUs. The reasoning
+behind the doubling of deadlines is as follows. The real cost of migrating a
+task from one CPU to another is entirely dependant on the cache footprint of
+the task, how cache intensive the task is, how long it's been running on that
+CPU to take up the bulk of its cache, how big the CPU cache is, how fast and
+how layered the CPU cache is, how fast a context switch is... and so on. In
+other words, it's close to random in the real world where we do more than just
+one sole workload. The only thing we can be sure of is that it's not free. So
+BFS uses the principle that an idle CPU is a wasted CPU and utilising idle CPUs
+is more important than cache locality, and cache locality only plays a part
+after that. Doubling the effective deadline is based on the premise that the
+"cache local" CPUs will tend to work on the same tasks up to double the number
+of cache local CPUs, and once the workload is beyond that amount, it is likely
+that none of the tasks are cache warm anywhere anyway. The quadrupling for NUMA
+is a value I pulled out of my arse.
+
+When choosing an idle CPU for a waking task, the cache locality is determined
+according to where the task last ran and then idle CPUs are ranked from best
+to worst to choose the most suitable idle CPU based on cache locality, NUMA
+node locality and hyperthread sibling business. They are chosen in the
+following preference (if idle):
+
+* Same core, idle or busy cache, idle threads
+* Other core, same cache, idle or busy cache, idle threads.
+* Same node, other CPU, idle cache, idle threads.
+* Same node, other CPU, busy cache, idle threads.
+* Same core, busy threads.
+* Other core, same cache, busy threads.
+* Same node, other CPU, busy threads.
+* Other node, other CPU, idle cache, idle threads.
+* Other node, other CPU, busy cache, idle threads.
+* Other node, other CPU, busy threads.
+
+This shows the SMT or "hyperthread" awareness in the design as well which will
+choose a real idle core first before a logical SMT sibling which already has
+tasks on the physical CPU.
+
+Early benchmarking of BFS suggested scalability dropped off at the 16 CPU mark.
+However this benchmarking was performed on an earlier design that was far less
+scalable than the current one so it's hard to know how scalable it is in terms
+of both CPUs (due to the global runqueue) and heavily loaded machines (due to
+O(n) lookup) at this stage. Note that in terms of scalability, the number of
+_logical_ CPUs matters, not the number of _physical_ CPUs. Thus, a dual (2x)
+quad core (4X) hyperthreaded (2X) machine is effectively a 16X. Newer benchmark
+results are very promising indeed, without needing to tweak any knobs, features
+or options. Benchmark contributions are most welcome.
+
+
+Features
+
+As the initial prime target audience for BFS was the average desktop user, it
+was designed to not need tweaking, tuning or have features set to obtain benefit
+from it. Thus the number of knobs and features has been kept to an absolute
+minimum and should not require extra user input for the vast majority of cases.
+There are precisely 2 tunables, and 2 extra scheduling policies. The rr_interval
+and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO policies. In addition
+to this, BFS also uses sub-tick accounting. What BFS does _not_ now feature is
+support for CGROUPS. The average user should neither need to know what these
+are, nor should they need to be using them to have good desktop behaviour.
+
+rr_interval
+
+There is only one "scheduler" tunable, the round robin interval. This can be
+accessed in
+
+ /proc/sys/kernel/rr_interval
+
+The value is in milliseconds, and the default value is set to 6 on a
+uniprocessor machine, and automatically set to a progressively higher value on
+multiprocessor machines. The reasoning behind increasing the value on more CPUs
+is that the effective latency is decreased by virtue of there being more CPUs on
+BFS (for reasons explained above), and increasing the value allows for less
+cache contention and more throughput. Valid values are from 1 to 1000
+Decreasing the value will decrease latencies at the cost of decreasing
+throughput, while increasing it will improve throughput, but at the cost of
+worsening latencies. The accuracy of the rr interval is limited by HZ resolution
+of the kernel configuration. Thus, the worst case latencies are usually slightly
+higher than this actual value. The default value of 6 is not an arbitrary one.
+It is based on the fact that humans can detect jitter at approximately 7ms, so
+aiming for much lower latencies is pointless under most circumstances. It is
+worth noting this fact when comparing the latency performance of BFS to other
+schedulers. Worst case latencies being higher than 7ms are far worse than
+average latencies not being in the microsecond range.
+
+Isochronous scheduling.
+
+Isochronous scheduling is a unique scheduling policy designed to provide
+near-real-time performance to unprivileged (ie non-root) users without the
+ability to starve the machine indefinitely. Isochronous tasks (which means
+"same time") are set using, for example, the schedtool application like so:
+
+ schedtool -I -e amarok
+
+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
+is that it has a priority level between true realtime tasks and SCHED_NORMAL
+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
+rate). However if ISO tasks run for more than a tunable finite amount of time,
+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
+time is the percentage of _total CPU_ available across the machine, configurable
+as a percentage in the following "resource handling" tunable (as opposed to a
+scheduler tunable):
+
+ /proc/sys/kernel/iso_cpu
+
+and is set to 70% by default. It is calculated over a rolling 5 second average
+Because it is the total CPU available, it means that on a multi CPU machine, it
+is possible to have an ISO task running as realtime scheduling indefinitely on
+just one CPU, as the other CPUs will be available. Setting this to 100 is the
+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
+ability to run any pseudo-realtime tasks.
+
+A feature of BFS is that it detects when an application tries to obtain a
+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
+appropriate privileges to use those policies. When it detects this, it will
+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
+Because some applications constantly set their policy as well as their nice
+level, there is potential for them to undo the override specified by the user
+on the command line of setting the policy to SCHED_ISO. To counter this, once
+a task has been set to SCHED_ISO policy, it needs superuser privileges to set
+it back to SCHED_NORMAL. This will ensure the task remains ISO and all child
+processes and threads will also inherit the ISO policy.
+
+Idleprio scheduling.
+
+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
+ultra low priority tasks to be run in the background that have virtually no
+effect on the foreground tasks. This is ideally suited to distributed computing
+clients (like setiathome, folding, mprime etc) but can also be used to start
+a video encode or so on without any slowdown of other tasks. To avoid this
+policy from grabbing shared resources and holding them indefinitely, if it
+detects a state where the task is waiting on I/O, the machine is about to
+suspend to ram and so on, it will transiently schedule them as SCHED_NORMAL. As
+per the Isochronous task management, once a task has been scheduled as IDLEPRIO,
+it cannot be put back to SCHED_NORMAL without superuser privileges. Tasks can
+be set to start as SCHED_IDLEPRIO with the schedtool command like so:
+
+ schedtool -D -e ./mprime
+
+Subtick accounting.
+
+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
+the accounting is done by simply determining what is happening at the precise
+moment a timer tick fires off. This becomes increasingly inaccurate as the
+timer tick frequency (HZ) is lowered. It is possible to create an application
+which uses almost 100% CPU, yet by being descheduled at the right time, records
+zero CPU usage. While the main problem with this is that there are possible
+security implications, it is also difficult to determine how much CPU a task
+really does use. BFS tries to use the sub-tick accounting from the TSC clock,
+where possible, to determine real CPU usage. This is not entirely reliable, but
+is far more likely to produce accurate CPU usage data than the existing designs
+and will not show tasks as consuming no CPU usage when they actually are. Thus,
+the amount of CPU reported as being used by BFS will more accurately represent
+how much CPU the task itself is using (as is shown for example by the 'time'
+application), so the reported values may be quite different to other schedulers.
+Values reported as the 'load' are more prone to problems with this design, but
+per process values are closer to real usage. When comparing throughput of BFS
+to other designs, it is important to compare the actual completed work in terms
+of total wall clock time taken and total work done, rather than the reported
+"cpu usage".
+
+
+Con Kolivas <kernel@kolivas.org> Fri Aug 27 2010
diff --git a/Documentation/scheduler/sched-MuQSS.txt b/Documentation/scheduler/sched-MuQSS.txt
new file mode 100644
index 000000000000..ae28b85c9995
--- /dev/null
+++ b/Documentation/scheduler/sched-MuQSS.txt
@@ -0,0 +1,373 @@
+MuQSS - The Multiple Queue Skiplist Scheduler by Con Kolivas.
+
+MuQSS is a per-cpu runqueue variant of the original BFS scheduler with
+one 8 level skiplist per runqueue, and fine grained locking for much more
+scalability.
+
+
+Goals.
+
+The goal of the Multiple Queue Skiplist Scheduler, referred to as MuQSS from
+here on (pronounced mux) is to completely do away with the complex designs of
+the past for the cpu process scheduler and instead implement one that is very
+simple in basic design. The main focus of MuQSS is to achieve excellent desktop
+interactivity and responsiveness without heuristics and tuning knobs that are
+difficult to understand, impossible to model and predict the effect of, and when
+tuned to one workload cause massive detriment to another, while still being
+scalable to many CPUs and processes.
+
+
+Design summary.
+
+MuQSS is best described as per-cpu multiple runqueue, O(log n) insertion, O(1)
+lookup, earliest effective virtual deadline first tickless design, loosely based
+on EEVDF (earliest eligible virtual deadline first) and my previous Staircase
+Deadline scheduler, and evolved from the single runqueue O(n) BFS scheduler.
+Each component shall be described in order to understand the significance of,
+and reasoning for it.
+
+
+Design reasoning.
+
+In BFS, the use of a single runqueue across all CPUs meant that each CPU would
+need to scan the entire runqueue looking for the process with the earliest
+deadline and schedule that next, regardless of which CPU it originally came
+from. This made BFS deterministic with respect to latency and provided
+guaranteed latencies dependent on number of processes and CPUs. The single
+runqueue, however, meant that all CPUs would compete for the single lock
+protecting it, which would lead to increasing lock contention as the number of
+CPUs rose and appeared to limit scalability of common workloads beyond 16
+logical CPUs. Additionally, the O(n) lookup of the runqueue list obviously
+increased overhead proportionate to the number of queued proecesses and led to
+cache thrashing while iterating over the linked list.
+
+MuQSS is an evolution of BFS, designed to maintain the same scheduling
+decision mechanism and be virtually deterministic without relying on the
+constrained design of the single runqueue by splitting out the single runqueue
+to be per-CPU and use skiplists instead of linked lists.
+
+The original reason for going back to a single runqueue design for BFS was that
+once multiple runqueues are introduced, per-CPU or otherwise, there will be
+complex interactions as each runqueue will be responsible for the scheduling
+latency and fairness of the tasks only on its own runqueue, and to achieve
+fairness and low latency across multiple CPUs, any advantage in throughput of
+having CPU local tasks causes other disadvantages. This is due to requiring a
+very complex balancing system to at best achieve some semblance of fairness
+across CPUs and can only maintain relatively low latency for tasks bound to the
+same CPUs, not across them. To increase said fairness and latency across CPUs,
+the advantage of local runqueue locking, which makes for better scalability, is
+lost due to having to grab multiple locks.
+
+MuQSS works around the problems inherent in multiple runqueue designs by
+making its skip lists priority ordered and through novel use of lockless
+examination of each other runqueue it can decide if it should take the earliest
+deadline task from another runqueue for latency reasons, or for CPU balancing
+reasons. It still does not have a balancing system, choosing to allow the
+next task scheduling decision and task wakeup CPU choice to allow balancing to
+happen by virtue of its choices.
+
+As a further evolution of the design, MuQSS normally configures sharing of
+runqueues in a logical fashion for when CPU resources are shared for improved
+latency and throughput. By default it shares runqueues and locks between
+multicore siblings. Optionally it can be configured to run with sharing of
+SMT siblings only, all SMP packages or no sharing at all. Additionally it can
+be selected at boot time.
+
+
+Design details.
+
+Custom skip list implementation:
+
+To avoid the overhead of building up and tearing down skip list structures,
+the variant used by MuQSS has a number of optimisations making it specific for
+its use case in the scheduler. It uses static arrays of 8 'levels' instead of
+building up and tearing down structures dynamically. This makes each runqueue
+only scale O(log N) up to 64k tasks. However as there is one runqueue per CPU
+it means that it scales O(log N) up to 64k x number of logical CPUs which is
+far beyond the realistic task limits each CPU could handle. By being 8 levels
+it also makes the array exactly one cacheline in size. Additionally, each
+skip list node is bidirectional making insertion and removal amortised O(1),
+being O(k) where k is 1-8. Uniquely, we are only ever interested in the very
+first entry in each list at all times with MuQSS, so there is never a need to
+do a search and thus look up is always O(1). In interactive mode, the queues
+will be searched beyond their first entry if the first task is not suitable
+for affinity or SMT nice reasons.
+
+Task insertion:
+
+MuQSS inserts tasks into a per CPU runqueue as an O(log N) insertion into
+a custom skip list as described above (based on the original design by William
+Pugh). Insertion is ordered in such a way that there is never a need to do a
+search by ordering tasks according to static priority primarily, and then
+virtual deadline at the time of insertion.
+
+Niffies:
+
+Niffies are a monotonic forward moving timer not unlike the "jiffies" but are
+of nanosecond resolution. Niffies are calculated per-runqueue from the high
+resolution TSC timers, and in order to maintain fairness are synchronised
+between CPUs whenever both runqueues are locked concurrently.
+
+Virtual deadline:
+
+The key to achieving low latency, scheduling fairness, and "nice level"
+distribution in MuQSS is entirely in the virtual deadline mechanism. The one
+tunable in MuQSS is the rr_interval, or "round robin interval". This is the
+maximum time two SCHED_OTHER (or SCHED_NORMAL, the common scheduling policy)
+tasks of the same nice level will be running for, or looking at it the other
+way around, the longest duration two tasks of the same nice level will be
+delayed for. When a task requests cpu time, it is given a quota (time_slice)
+equal to the rr_interval and a virtual deadline. The virtual deadline is
+offset from the current time in niffies by this equation:
+
+ niffies + (prio_ratio * rr_interval)
+
+The prio_ratio is determined as a ratio compared to the baseline of nice -20
+and increases by 10% per nice level. The deadline is a virtual one only in that
+no guarantee is placed that a task will actually be scheduled by this time, but
+it is used to compare which task should go next. There are three components to
+how a task is next chosen. First is time_slice expiration. If a task runs out
+of its time_slice, it is descheduled, the time_slice is refilled, and the
+deadline reset to that formula above. Second is sleep, where a task no longer
+is requesting CPU for whatever reason. The time_slice and deadline are _not_
+adjusted in this case and are just carried over for when the task is next
+scheduled. Third is preemption, and that is when a newly waking task is deemed
+higher priority than a currently running task on any cpu by virtue of the fact
+that it has an earlier virtual deadline than the currently running task. The
+earlier deadline is the key to which task is next chosen for the first and
+second cases.
+
+The CPU proportion of different nice tasks works out to be approximately the
+
+ (prio_ratio difference)^2
+
+The reason it is squared is that a task's deadline does not change while it is
+running unless it runs out of time_slice. Thus, even if the time actually
+passes the deadline of another task that is queued, it will not get CPU time
+unless the current running task deschedules, and the time "base" (niffies) is
+constantly moving.
+
+Task lookup:
+
+As tasks are already pre-ordered according to anticipated scheduling order in
+the skip lists, lookup for the next suitable task per-runqueue is always a
+matter of simply selecting the first task in the 0th level skip list entry.
+In order to maintain optimal latency and fairness across CPUs, MuQSS does a
+novel examination of every other runqueue in cache locality order, choosing the
+best task across all runqueues. This provides near-determinism of how long any
+task across the entire system may wait before receiving CPU time. The other
+runqueues are first examine lockless and then trylocked to minimise the
+potential lock contention if they are likely to have a suitable better task.
+Each other runqueue lock is only held for as long as it takes to examine the
+entry for suitability. In "interactive" mode, the default setting, MuQSS will
+look for the best deadline task across all CPUs, while in !interactive mode,
+it will only select a better deadline task from another CPU if it is more
+heavily laden than the current one.
+
+Lookup is therefore O(k) where k is number of CPUs.
+
+
+Latency.
+
+Through the use of virtual deadlines to govern the scheduling order of normal
+tasks, queue-to-activation latency per runqueue is guaranteed to be bound by
+the rr_interval tunable which is set to 6ms by default. This means that the
+longest a CPU bound task will wait for more CPU is proportional to the number
+of running tasks and in the common case of 0-2 running tasks per CPU, will be
+under the 7ms threshold for human perception of jitter. Additionally, as newly
+woken tasks will have an early deadline from their previous runtime, the very
+tasks that are usually latency sensitive will have the shortest interval for
+activation, usually preempting any existing CPU bound tasks.
+
+Tickless expiry:
+
+A feature of MuQSS is that it is not tied to the resolution of the chosen tick
+rate in Hz, instead depending entirely on the high resolution timers where
+possible for sub-millisecond accuracy on timeouts regarless of the underlying
+tick rate. This allows MuQSS to be run with the low overhead of low Hz rates
+such as 100 by default, benefiting from the improved throughput and lower
+power usage it provides. Another advantage of this approach is that in
+combination with the Full No HZ option, which disables ticks on running task
+CPUs instead of just idle CPUs, the tick can be disabled at all times
+regardless of how many tasks are running instead of being limited to just one
+running task. Note that this option is NOT recommended for regular desktop
+users.
+
+
+Scalability and balancing.
+
+Unlike traditional approaches where balancing is a combination of CPU selection
+at task wakeup and intermittent balancing based on a vast array of rules set
+according to architecture, busyness calculations and special case management,
+MuQSS indirectly balances on the fly at task wakeup and next task selection.
+During initialisation, MuQSS creates a cache coherency ordered list of CPUs for
+each logical CPU and uses this to aid task/CPU selection when CPUs are busy.
+Additionally it selects any idle CPUs, if they are available, at any time over
+busy CPUs according to the following preference:
+
+ * Same thread, idle or busy cache, idle or busy threads
+ * Other core, same cache, idle or busy cache, idle threads.
+ * Same node, other CPU, idle cache, idle threads.
+ * Same node, other CPU, busy cache, idle threads.
+ * Other core, same cache, busy threads.
+ * Same node, other CPU, busy threads.
+ * Other node, other CPU, idle cache, idle threads.
+ * Other node, other CPU, busy cache, idle threads.
+ * Other node, other CPU, busy threads.
+
+Mux is therefore SMT, MC and Numa aware without the need for extra
+intermittent balancing to maintain CPUs busy and make the most of cache
+coherency.
+
+
+Features
+
+As the initial prime target audience for MuQSS was the average desktop user, it
+was designed to not need tweaking, tuning or have features set to obtain benefit
+from it. Thus the number of knobs and features has been kept to an absolute
+minimum and should not require extra user input for the vast majority of cases.
+There are 3 optional tunables, and 2 extra scheduling policies. The rr_interval,
+interactive, and iso_cpu tunables, and the SCHED_ISO and SCHED_IDLEPRIO
+policies. In addition to this, MuQSS also uses sub-tick accounting. What MuQSS
+does _not_ now feature is support for CGROUPS. The average user should neither
+need to know what these are, nor should they need to be using them to have good
+desktop behaviour. However since some applications refuse to work without
+cgroups, one can enable them with MuQSS as a stub and the filesystem will be
+created which will allow the applications to work.
+
+rr_interval:
+
+ /proc/sys/kernel/rr_interval
+
+The value is in milliseconds, and the default value is set to 6. Valid values
+are from 1 to 1000 Decreasing the value will decrease latencies at the cost of
+decreasing throughput, while increasing it will improve throughput, but at the
+cost of worsening latencies. It is based on the fact that humans can detect
+jitter at approximately 7ms, so aiming for much lower latencies is pointless
+under most circumstances. It is worth noting this fact when comparing the
+latency performance of MuQSS to other schedulers. Worst case latencies being
+higher than 7ms are far worse than average latencies not being in the
+microsecond range.
+
+interactive:
+
+ /proc/sys/kernel/interactive
+
+The value is a simple boolean of 1 for on and 0 for off and is set to on by
+default. Disabling this will disable the near-determinism of MuQSS when
+selecting the next task by not examining all CPUs for the earliest deadline
+task, or which CPU to wake to, instead prioritising CPU balancing for improved
+throughput. Latency will still be bound by rr_interval, but on a per-CPU basis
+instead of across the whole system.
+
+Runqueue sharing.
+
+By default MuQSS chooses to share runqueue resources (specifically the skip
+list and locking) between multicore siblings. It is configurable at build time
+to select between None, SMT, MC and SMP, corresponding to no sharing, sharing
+only between simultaneous mulithreading siblings, multicore siblings, or
+symmetric multiprocessing physical packages. Additionally it can be se at
+bootime with the use of the rqshare parameter. The reason for configurability
+is that some architectures have CPUs with many multicore siblings (>= 16)
+where it may be detrimental to throughput to share runqueues and another
+sharing option may be desirable. Additionally, more sharing than usual can
+improve latency on a system-wide level at the expense of throughput if desired.
+
+The options are:
+none, smt, mc, smp
+
+eg:
+ rqshare=mc
+
+Isochronous scheduling:
+
+Isochronous scheduling is a unique scheduling policy designed to provide
+near-real-time performance to unprivileged (ie non-root) users without the
+ability to starve the machine indefinitely. Isochronous tasks (which means
+"same time") are set using, for example, the schedtool application like so:
+
+ schedtool -I -e amarok
+
+This will start the audio application "amarok" as SCHED_ISO. How SCHED_ISO works
+is that it has a priority level between true realtime tasks and SCHED_NORMAL
+which would allow them to preempt all normal tasks, in a SCHED_RR fashion (ie,
+if multiple SCHED_ISO tasks are running, they purely round robin at rr_interval
+rate). However if ISO tasks run for more than a tunable finite amount of time,
+they are then demoted back to SCHED_NORMAL scheduling. This finite amount of
+time is the percentage of CPU available per CPU, configurable as a percentage in
+the following "resource handling" tunable (as opposed to a scheduler tunable):
+
+iso_cpu:
+
+ /proc/sys/kernel/iso_cpu
+
+and is set to 70% by default. It is calculated over a rolling 5 second average
+Because it is the total CPU available, it means that on a multi CPU machine, it
+is possible to have an ISO task running as realtime scheduling indefinitely on
+just one CPU, as the other CPUs will be available. Setting this to 100 is the
+equivalent of giving all users SCHED_RR access and setting it to 0 removes the
+ability to run any pseudo-realtime tasks.
+
+A feature of MuQSS is that it detects when an application tries to obtain a
+realtime policy (SCHED_RR or SCHED_FIFO) and the caller does not have the
+appropriate privileges to use those policies. When it detects this, it will
+give the task SCHED_ISO policy instead. Thus it is transparent to the user.
+
+
+Idleprio scheduling:
+
+Idleprio scheduling is a scheduling policy designed to give out CPU to a task
+_only_ when the CPU would be otherwise idle. The idea behind this is to allow
+ultra low priority tasks to be run in the background that have virtually no
+effect on the foreground tasks. This is ideally suited to distributed computing
+clients (like setiathome, folding, mprime etc) but can also be used to start a
+video encode or so on without any slowdown of other tasks. To avoid this policy
+from grabbing shared resources and holding them indefinitely, if it detects a
+state where the task is waiting on I/O, the machine is about to suspend to ram
+and so on, it will transiently schedule them as SCHED_NORMAL. Once a task has
+been scheduled as IDLEPRIO, it cannot be put back to SCHED_NORMAL without
+superuser privileges since it is effectively a lower scheduling policy. Tasks
+can be set to start as SCHED_IDLEPRIO with the schedtool command like so:
+
+schedtool -D -e ./mprime
+
+Subtick accounting:
+
+It is surprisingly difficult to get accurate CPU accounting, and in many cases,
+the accounting is done by simply determining what is happening at the precise
+moment a timer tick fires off. This becomes increasingly inaccurate as the timer
+tick frequency (HZ) is lowered. It is possible to create an application which
+uses almost 100% CPU, yet by being descheduled at the right time, records zero
+CPU usage. While the main problem with this is that there are possible security
+implications, it is also difficult to determine how much CPU a task really does
+use. Mux uses sub-tick accounting from the TSC clock to determine real CPU
+usage. Thus, the amount of CPU reported as being used by MuQSS will more
+accurately represent how much CPU the task itself is using (as is shown for
+example by the 'time' application), so the reported values may be quite
+different to other schedulers. When comparing throughput of MuQSS to other
+designs, it is important to compare the actual completed work in terms of total
+wall clock time taken and total work done, rather than the reported "cpu usage".
+
+Symmetric MultiThreading (SMT) aware nice:
+
+SMT, a.k.a. hyperthreading, is a very common feature on modern CPUs. While the
+logical CPU count rises by adding thread units to each CPU core, allowing more
+than one task to be run simultaneously on the same core, the disadvantage of it
+is that the CPU power is shared between the tasks, not summating to the power
+of two CPUs. The practical upshot of this is that two tasks running on
+separate threads of the same core run significantly slower than if they had one
+core each to run on. While smart CPU selection allows each task to have a core
+to itself whenever available (as is done on MuQSS), it cannot offset the
+slowdown that occurs when the cores are all loaded and only a thread is left.
+Most of the time this is harmless as the CPU is effectively overloaded at this
+point and the extra thread is of benefit. However when running a niced task in
+the presence of an un-niced task (say nice 19 v nice 0), the nice task gets
+precisely the same amount of CPU power as the unniced one. MuQSS has an
+optional configuration feature known as SMT-NICE which selectively idles the
+secondary niced thread for a period proportional to the nice difference,
+allowing CPU distribution according to nice level to be maintained, at the
+expense of a small amount of extra overhead. If this is configured in on a
+machine without SMT threads, the overhead is minimal.
+
+
+Con Kolivas <kernel@kolivas.org> Sat, 29th October 2016
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index aa058aa7bf28..68cbcc9fe1a5 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -41,6 +41,7 @@ show up in /proc/sys/kernel:
- hung_task_check_interval_secs
- hung_task_warnings
- hyperv_record_panic_msg
+- iso_cpu
- kexec_load_disabled
- kptr_restrict
- l2cr [ PPC only ]
@@ -77,6 +78,7 @@ show up in /proc/sys/kernel:
- randomize_va_space
- real-root-dev ==> Documentation/admin-guide/initrd.rst
- reboot-cmd [ SPARC only ]
+- rr_interval
- rtsig-max
- rtsig-nr
- sched_energy_aware
@@ -100,6 +102,7 @@ show up in /proc/sys/kernel:
- unknown_nmi_panic
- watchdog
- watchdog_thresh
+- yield_type
- version
==============================================================
@@ -438,6 +441,16 @@ When kptr_restrict is set to (2), kernel pointers printed using
==============================================================
+iso_cpu: (MuQSS CPU scheduler only).
+
+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
+run effectively at realtime priority, averaged over a rolling five
+seconds over the -whole- system, meaning all cpus.
+
+Set to 70 (percent) by default.
+
+==============================================================
+
l2cr: (PPC only)
This flag controls the L2 cache of G3 processor boards. If
@@ -881,6 +894,20 @@ rebooting. ???
==============================================================
+rr_interval: (MuQSS CPU scheduler only)
+
+This is the smallest duration that any cpu process scheduling unit
+will run for. Increasing this value can increase throughput of cpu
+bound tasks substantially but at the expense of increased latencies
+overall. Conversely decreasing it will decrease average and maximum
+latencies but at the expense of throughput. This value is in
+milliseconds and the default value chosen depends on the number of
+cpus available at scheduler initialisation with a minimum of 6.
+
+Valid values are from 1-1000.
+
+==============================================================
+
rtsig-max & rtsig-nr:
The file rtsig-max can be used to tune the maximum number
@@ -1143,3 +1170,13 @@ The softlockup threshold is (2 * watchdog_thresh). Setting this
tunable to zero will disable lockup detection altogether.
==============================================================
+
+yield_type: (MuQSS CPU scheduler only)
+
+This determines what type of yield calls to sched_yield will perform.
+
+ 0: No yield.
+ 1: Yield only to better priority/deadline tasks. (default)
+ 2: Expire timeslice and recalculate deadline.
+
+==============================================================
diff --git a/arch/alpha/Kconfig b/arch/alpha/Kconfig
index 584a6e114853..2d497c3710f2 100644
--- a/arch/alpha/Kconfig
+++ b/arch/alpha/Kconfig
@@ -670,6 +670,8 @@ config HZ
default 1200 if HZ_1200
default 1024
+source "kernel/Kconfig.MuQSS"
+
config SRM_ENV
tristate "SRM environment through procfs"
depends on PROC_FS
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
index 9aed25a6019b..84d1a255c6e0 100644
--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -1308,6 +1308,8 @@ config SCHED_SMT
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
+source "kernel/Kconfig.MuQSS"
+
config HAVE_ARM_SCU
bool
help
diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig
index 7e34b9eba5de..10d5e92f3291 100644
--- a/arch/arm64/Kconfig
+++ b/arch/arm64/Kconfig
@@ -807,6 +807,8 @@ config SCHED_SMT
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
+source "kernel/Kconfig.MuQSS"
+
config NR_CPUS
int "Maximum number of CPUs (2-4096)"
range 2 4096
diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
index 2d0be82c3061..18ed2dc91fc3 100644
--- a/arch/powerpc/Kconfig
+++ b/arch/powerpc/Kconfig
@@ -820,6 +820,8 @@ config SCHED_SMT
when dealing with POWER5 cpus at a cost of slightly increased
overhead in some places. If unsure say N here.
+source "kernel/Kconfig.MuQSS"
+
config PPC_DENORMALISATION
bool "PowerPC denormalisation exception handling"
depends on PPC_BOOK3S_64
diff --git a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c
index 9fcccb4490b9..7f2b6c226eed 100644
--- a/arch/powerpc/platforms/cell/spufs/sched.c
+++ b/arch/powerpc/platforms/cell/spufs/sched.c
@@ -64,11 +64,6 @@ static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
static struct timer_list spuloadavg_timer;
-/*
- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
- */
-#define NORMAL_PRIO 120
-
/*
* Frequency of the spu scheduler tick. By default we do one SPU scheduler
* tick for every 10 CPU scheduler ticks.
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 62fc3fda1a05..fe5df269452d 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -1017,6 +1017,22 @@ config NR_CPUS
config SCHED_SMT
def_bool y if SMP
+config SMT_NICE
+ bool "SMT (Hyperthreading) aware nice priority and policy support"
+ depends on SCHED_MUQSS && SCHED_SMT
+ default y
+ ---help---
+ Enabling Hyperthreading on Intel CPUs decreases the effectiveness
+ of the use of 'nice' levels and different scheduling policies
+ (e.g. realtime) due to sharing of CPU power between hyperthreads.
+ SMT nice support makes each logical CPU aware of what is running on
+ its hyperthread siblings, maintaining appropriate distribution of
+ CPU according to nice levels and scheduling policies at the expense
+ of slightly increased overhead.
+
+ If unsure say Y here.
+
+
config SCHED_MC
def_bool y
prompt "Multi-core scheduler support"
@@ -1047,6 +1063,8 @@ config SCHED_MC_PRIO
If unsure say Y here.
+source "kernel/Kconfig.MuQSS"
+
config UP_LATE_INIT
def_bool y
depends on !SMP && X86_LOCAL_APIC
diff --git a/fs/proc/base.c b/fs/proc/base.c
index 6a803a0b75df..c75b7be0f94b 100644
--- a/fs/proc/base.c
+++ b/fs/proc/base.c
@@ -463,7 +463,7 @@ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
seq_puts(m, "0 0 0\n");
else
seq_printf(m, "%llu %llu %lu\n",
- (unsigned long long)task->se.sum_exec_runtime,
+ (unsigned long long)tsk_seruntime(task),
(unsigned long long)task->sched_info.run_delay,
task->sched_info.pcount);
diff --git a/include/linux/init_task.h b/include/linux/init_task.h
index 6049baa5b8bc..9a70cbc958a7 100644
--- a/include/linux/init_task.h
+++ b/include/linux/init_task.h
@@ -47,7 +47,11 @@ extern struct cred init_cred;
#define INIT_CPU_TIMERS(s)
#endif
+#ifdef CONFIG_SCHED_MUQSS
+#define INIT_TASK_COMM "MuQSS"
+#else
#define INIT_TASK_COMM "swapper"
+#endif
/* Attach to the init_task data structure for proper alignment */
#ifdef CONFIG_ARCH_TASK_STRUCT_ON_STACK
diff --git a/include/linux/ioprio.h b/include/linux/ioprio.h
index e9bfe6972aed..16ba1c7e5bde 100644
--- a/include/linux/ioprio.h
+++ b/include/linux/ioprio.h
@@ -53,6 +53,8 @@ enum {
*/
static inline int task_nice_ioprio(struct task_struct *task)
{
+ if (iso_task(task))
+ return 0;
return (task_nice(task) + 20) / 5;
}
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 1549584a1538..71d849ef5ee2 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -30,6 +30,9 @@
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
#include <linux/rseq.h>
+#ifdef CONFIG_SCHED_MUQSS
+#include <linux/skip_list.h>
+#endif
/* task_struct member predeclarations (sorted alphabetically): */
struct audit_context;
@@ -605,9 +608,11 @@ struct task_struct {
unsigned int flags;
unsigned int ptrace;
+#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_MUQSS)
+ int on_cpu;
+#endif
#ifdef CONFIG_SMP
struct llist_node wake_entry;
- int on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */
unsigned int cpu;
@@ -632,10 +637,25 @@ struct task_struct {
int static_prio;
int normal_prio;
unsigned int rt_priority;
+#ifdef CONFIG_SCHED_MUQSS
+ int time_slice;
+ u64 deadline;
+ skiplist_node node; /* Skip list node */
+ u64 last_ran;
+ u64 sched_time; /* sched_clock time spent running */
+#ifdef CONFIG_SMT_NICE
+ int smt_bias; /* Policy/nice level bias across smt siblings */
+#endif
+#ifdef CONFIG_HOTPLUG_CPU
+ bool zerobound; /* Bound to CPU0 for hotplug */
+#endif
+ unsigned long rt_timeout;
+#else /* CONFIG_SCHED_MUQSS */
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
+#endif
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
@@ -790,6 +810,10 @@ struct task_struct {
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
u64 utimescaled;
u64 stimescaled;
+#endif
+#ifdef CONFIG_SCHED_MUQSS
+ /* Unbanked cpu time */
+ unsigned long utime_ns, stime_ns;
#endif
u64 gtime;
struct prev_cputime prev_cputime;
@@ -1217,6 +1241,40 @@ struct task_struct {
*/
};
+#ifdef CONFIG_SCHED_MUQSS
+#define tsk_seruntime(t) ((t)->sched_time)
+#define tsk_rttimeout(t) ((t)->rt_timeout)
+
+static inline void tsk_cpus_current(struct task_struct *p)
+{
+}
+
+void print_scheduler_version(void);
+
+static inline bool iso_task(struct task_struct *p)
+{
+ return (p->policy == SCHED_ISO);
+}
+#else /* CFS */
+#define tsk_seruntime(t) ((t)->se.sum_exec_runtime)
+#define tsk_rttimeout(t) ((t)->rt.timeout)
+
+static inline void tsk_cpus_current(struct task_struct *p)
+{
+ p->nr_cpus_allowed = current->nr_cpus_allowed;
+}
+
+static inline void print_scheduler_version(void)
+{
+ printk(KERN_INFO "CFS CPU scheduler.\n");
+}
+
+static inline bool iso_task(struct task_struct *p)
+{
+ return false;
+}
+#endif /* CONFIG_SCHED_MUQSS */
+
static inline struct pid *task_pid(struct task_struct *task)
{
return task->thread_pid;
diff --git a/include/linux/sched/nohz.h b/include/linux/sched/nohz.h
index b36f4cf38111..61b03ea2edc9 100644
--- a/include/linux/sched/nohz.h
+++ b/include/linux/sched/nohz.h
@@ -6,7 +6,7 @@
* This is the interface between the scheduler and nohz/dynticks:
*/
-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_MUQSS)
extern void cpu_load_update_nohz_start(void);
extern void cpu_load_update_nohz_stop(void);
#else
@@ -21,7 +21,7 @@ extern int get_nohz_timer_target(void);
static inline void nohz_balance_enter_idle(int cpu) { }
#endif
-#ifdef CONFIG_NO_HZ_COMMON
+#if defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_MUQSS)
void calc_load_nohz_start(void);
void calc_load_nohz_stop(void);
#else
diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
index 7d64feafc408..43c9d9e50c09 100644
--- a/include/linux/sched/prio.h
+++ b/include/linux/sched/prio.h
@@ -20,8 +20,20 @@
*/
#define MAX_USER_RT_PRIO 100
+
+#ifdef CONFIG_SCHED_MUQSS
+/* Note different MAX_RT_PRIO */
+#define MAX_RT_PRIO (MAX_USER_RT_PRIO + 1)
+
+#define ISO_PRIO (MAX_RT_PRIO)
+#define NORMAL_PRIO (MAX_RT_PRIO + 1)
+#define IDLE_PRIO (MAX_RT_PRIO + 2)
+#define PRIO_LIMIT ((IDLE_PRIO) + 1)
+#else /* CONFIG_SCHED_MUQSS */
#define MAX_RT_PRIO MAX_USER_RT_PRIO
+#endif /* CONFIG_SCHED_MUQSS */
+
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
index e5af028c08b4..010b2244e0b6 100644
--- a/include/linux/sched/rt.h
+++ b/include/linux/sched/rt.h
@@ -24,8 +24,10 @@ static inline bool task_is_realtime(struct task_struct *tsk)
if (policy == SCHED_FIFO || policy == SCHED_RR)
return true;
+#ifndef CONFIG_SCHED_MUQSS
if (policy == SCHED_DEADLINE)
return true;
+#endif
return false;
}
diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h
index 2e97a2227045..619ce11ee75e 100644
--- a/include/linux/sched/task.h
+++ b/include/linux/sched/task.h
@@ -82,7 +82,7 @@ extern long kernel_wait4(pid_t, int __user *, int, struct rusage *);
extern void free_task(struct task_struct *tsk);
/* sched_exec is called by processes performing an exec */
-#ifdef CONFIG_SMP
+#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_MUQSS)
extern void sched_exec(void);
#else
#define sched_exec() {}
diff --git a/include/linux/skip_list.h b/include/linux/skip_list.h
new file mode 100644
index 000000000000..d4be84ba273b
--- /dev/null
+++ b/include/linux/skip_list.h
@@ -0,0 +1,33 @@
+#ifndef _LINUX_SKIP_LISTS_H
+#define _LINUX_SKIP_LISTS_H
+typedef u64 keyType;
+typedef void *valueType;
+
+typedef struct nodeStructure skiplist_node;
+
+struct nodeStructure {
+ int level; /* Levels in this structure */
+ keyType key;
+ valueType value;
+ skiplist_node *next[8];
+ skiplist_node *prev[8];
+};
+
+typedef struct listStructure {
+ int entries;
+ int level; /* Maximum level of the list
+ (1 more than the number of levels in the list) */
+ skiplist_node *header; /* pointer to header */
+} skiplist;
+
+void skiplist_init(skiplist_node *slnode);
+skiplist *new_skiplist(skiplist_node *slnode);
+void free_skiplist(skiplist *l);
+void skiplist_node_init(skiplist_node *node);
+void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed);
+void skiplist_delete(skiplist *l, skiplist_node *node);
+
+static inline bool skiplist_node_empty(skiplist_node *node) {
+ return (!node->next[0]);
+}
+#endif /* _LINUX_SKIP_LISTS_H */
diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h
index 22627f80063e..17077cd6fc40 100644
--- a/include/uapi/linux/sched.h
+++ b/include/uapi/linux/sched.h
@@ -37,9 +37,16 @@
#define SCHED_FIFO 1
#define SCHED_RR 2
#define SCHED_BATCH 3
-/* SCHED_ISO: reserved but not implemented yet */
+/* SCHED_ISO: Implemented on MuQSS only */
#define SCHED_IDLE 5
+#ifdef CONFIG_SCHED_MUQSS
+#define SCHED_ISO 4
+#define SCHED_IDLEPRIO SCHED_IDLE
+#define SCHED_MAX (SCHED_IDLEPRIO)
+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX)
+#else /* CONFIG_SCHED_MUQSS */
#define SCHED_DEADLINE 6
+#endif /* CONFIG_SCHED_MUQSS */
/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
#define SCHED_RESET_ON_FORK 0x40000000
diff --git a/init/Kconfig b/init/Kconfig
index 4592bf7997c0..04c74929ce80 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -64,6 +64,18 @@ config THREAD_INFO_IN_TASK
menu "General setup"
+config SCHED_MUQSS
+ bool "MuQSS cpu scheduler"
+ select HIGH_RES_TIMERS
+ ---help---
+ The Multiple Queue Skiplist Scheduler for excellent interactivity and
+ responsiveness on the desktop and highly scalable deterministic
+ low latency on any hardware.
+
+ Say Y here.
+ default y
+
+
config BROKEN
bool
@@ -702,6 +714,7 @@ config NUMA_BALANCING
depends on ARCH_SUPPORTS_NUMA_BALANCING
depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
depends on SMP && NUMA && MIGRATION
+ depends on !SCHED_MUQSS
help
This option adds support for automatic NUMA aware memory/task placement.
The mechanism is quite primitive and is based on migrating memory when
@@ -809,9 +822,13 @@ menuconfig CGROUP_SCHED
help
This feature lets CPU scheduler recognize task groups and control CPU
bandwidth allocation to such task groups. It uses cgroups to group
- tasks.
+ tasks. In combination with MuQSS this is purely a STUB to create the
+ files associated with the CPU controller cgroup but most of the
+ controls do nothing. This is useful for working in environments and
+ with applications that will only work if this control group is
+ present.
-if CGROUP_SCHED
+if CGROUP_SCHED && !SCHED_MUQSS
config FAIR_GROUP_SCHED
bool "Group scheduling for SCHED_OTHER"
depends on CGROUP_SCHED
@@ -918,6 +935,7 @@ config CGROUP_DEVICE
config CGROUP_CPUACCT
bool "Simple CPU accounting controller"
+ depends on !SCHED_MUQSS
help
Provides a simple controller for monitoring the
total CPU consumed by the tasks in a cgroup.
@@ -1036,6 +1054,7 @@ config CHECKPOINT_RESTORE
config SCHED_AUTOGROUP
bool "Automatic process group scheduling"
+ depends on !SCHED_MUQSS
select CGROUPS
select CGROUP_SCHED
select FAIR_GROUP_SCHED
diff --git a/init/init_task.c b/init/init_task.c
index c70ef656d0f4..91fab35e0d51 100644
--- a/init/init_task.c
+++ b/init/init_task.c
@@ -68,9 +68,17 @@ struct task_struct init_task
.stack = init_stack,
.usage = REFCOUNT_INIT(2),
.flags = PF_KTHREAD,
+#ifdef CONFIG_SCHED_MUQSS
+ .prio = NORMAL_PRIO,
+ .static_prio = MAX_PRIO-20,
+ .normal_prio = NORMAL_PRIO,
+ .deadline = 0,
+ .time_slice = 1000000,
+#else
.prio = MAX_PRIO - 20,
.static_prio = MAX_PRIO - 20,
.normal_prio = MAX_PRIO - 20,
+#endif
.policy = SCHED_NORMAL,
.cpus_allowed = CPU_MASK_ALL,
.nr_cpus_allowed= NR_CPUS,
@@ -79,6 +87,7 @@ struct task_struct init_task
.restart_block = {
.fn = do_no_restart_syscall,
},
+#ifndef CONFIG_SCHED_MUQSS
.se = {
.group_node = LIST_HEAD_INIT(init_task.se.group_node),
},
@@ -86,6 +95,7 @@ struct task_struct init_task
.run_list = LIST_HEAD_INIT(init_task.rt.run_list),
.time_slice = RR_TIMESLICE,
},
+#endif
.tasks = LIST_HEAD_INIT(init_task.tasks),
#ifdef CONFIG_SMP
.pushable_tasks = PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
diff --git a/init/main.c b/init/main.c
index 7d4025d665eb..b131f35dfb00 100644
--- a/init/main.c
+++ b/init/main.c
@@ -1083,6 +1083,8 @@ static int __ref kernel_init(void *unused)
rcu_end_inkernel_boot();
+ print_scheduler_version();
+
if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
diff --git a/kernel/Kconfig.MuQSS b/kernel/Kconfig.MuQSS
new file mode 100644
index 000000000000..558a7cb02cb9
--- /dev/null
+++ b/kernel/Kconfig.MuQSS
@@ -0,0 +1,89 @@
+choice
+ prompt "CPU scheduler runqueue sharing"
+ default RQ_MC if SCHED_MUQSS
+ default RQ_NONE
+
+config RQ_NONE
+ bool "No sharing"
+ help
+ This is the default behaviour where the CPU scheduler has one runqueue
+ per CPU, whether it is a physical or logical CPU (hyperthread).
+
+ This can still be enabled runtime with the boot parameter
+ rqshare=none
+
+ If unsure, say N.
+
+config RQ_SMT
+ bool "SMT (hyperthread) siblings"
+ depends on SCHED_SMT && SCHED_MUQSS
+
+ help
+ With this option enabled, the CPU scheduler will have one runqueue
+ shared by SMT (hyperthread) siblings. As these logical cores share
+ one physical core, sharing the runqueue resource can lead to decreased
+ overhead, lower latency and higher throughput.
+
+ This can still be enabled runtime with the boot parameter
+ rqshare=smt
+
+ If unsure, say N.
+
+config RQ_MC
+ bool "Multicore siblings"
+ depends on SCHED_MC && SCHED_MUQSS
+ help
+ With this option enabled, the CPU scheduler will have one runqueue
+ shared by multicore siblings in addition to any SMT siblings.
+ As these physical cores share caches, sharing the runqueue resource
+ will lead to lower latency, but its effects on overhead and throughput
+ are less predictable. As a general rule, 6 or fewer cores will likely
+ benefit from this, while larger CPUs will only derive a latency
+ benefit. If your workloads are primarily single threaded, this will
+ possibly worsen throughput. If you are only concerned about latency
+ then enable this regardless of how many cores you have.
+
+ This can still be enabled runtime with the boot parameter
+ rqshare=mc
+
+ If unsure, say Y.
+
+config RQ_SMP
+ bool "Symmetric Multi-Processing"
+ depends on SMP && SCHED_MUQSS
+ help
+ With this option enabled, the CPU scheduler will have one runqueue
+ shared by all physical CPUs unless they are on separate NUMA nodes.
+ As physical CPUs usually do not share resources, sharing the runqueue
+ will normally worsen throughput but improve latency. If you only
+ care about latency enable this.
+
+ This can still be enabled runtime with the boot parameter
+ rqshare=smp
+
+ If unsure, say N.
+
+config RQ_ALL
+ bool "NUMA"
+ depends on SMP && SCHED_MUQSS
+ help
+ With this option enabled, the CPU scheduler will have one runqueue
+ regardless of the architecture configuration, including across NUMA
+ nodes. This can substantially decrease throughput in NUMA
+ configurations, but light NUMA designs will not be dramatically
+ affected. This option should only be chosen if latency is the prime
+ concern.
+
+ This can still be enabled runtime with the boot parameter
+ rqshare=all
+
+ If unsure, say N.
+endchoice
+
+config SHARERQ
+ int
+ default 0 if RQ_NONE
+ default 1 if RQ_SMT
+ default 2 if RQ_MC
+ default 3 if RQ_SMP
+ default 4 if RQ_ALL
diff --git a/kernel/Makefile b/kernel/Makefile
index 6c57e78817da..c7c3424c0cf6 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -10,7 +10,7 @@ obj-y = fork.o exec_domain.o panic.o \
extable.o params.o \
kthread.o sys_ni.o nsproxy.o \
notifier.o ksysfs.o cred.o reboot.o \
- async.o range.o smpboot.o ucount.o
+ async.o range.o smpboot.o ucount.o skip_list.o
obj-$(CONFIG_MODULES) += kmod.o
obj-$(CONFIG_MULTIUSER) += groups.o
diff --git a/kernel/delayacct.c b/kernel/delayacct.c
index 2a12b988c717..dba268ca115f 100644
--- a/kernel/delayacct.c
+++ b/kernel/delayacct.c
@@ -115,7 +115,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
*/
t1 = tsk->sched_info.pcount;
t2 = tsk->sched_info.run_delay;
- t3 = tsk->se.sum_exec_runtime;
+ t3 = tsk_seruntime(tsk);
d->cpu_count += t1;
diff --git a/kernel/exit.c b/kernel/exit.c
index 2166c2d92ddc..c4eef2f20036 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -130,7 +130,7 @@ static void __exit_signal(struct task_struct *tsk)
sig->curr_target = next_thread(tsk);
}
- add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
+ add_device_randomness((const void*) &tsk_seruntime(tsk),
sizeof(unsigned long long));
/*
@@ -151,7 +151,7 @@ static void __exit_signal(struct task_struct *tsk)
sig->inblock += task_io_get_inblock(tsk);
sig->oublock += task_io_get_oublock(tsk);
task_io_accounting_add(&sig->ioac, &tsk->ioac);
- sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
+ sig->sum_sched_runtime += tsk_seruntime(tsk);
sig->nr_threads--;
__unhash_process(tsk, group_dead);
write_sequnlock(&sig->stats_lock);
diff --git a/kernel/kthread.c b/kernel/kthread.c
index 5942eeafb9ac..62a9f5534712 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -431,6 +431,34 @@ void kthread_bind(struct task_struct *p, unsigned int cpu)
}
EXPORT_SYMBOL(kthread_bind);
+#if defined(CONFIG_SCHED_MUQSS) && defined(CONFIG_SMP)
+extern void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
+
+/*
+ * new_kthread_bind is a special variant of __kthread_bind_mask.
+ * For new threads to work on muqss we want to call do_set_cpus_allowed
+ * without the task_cpu being set and the task rescheduled until they're
+ * rescheduled on their own so we call __do_set_cpus_allowed directly which
+ * only changes the cpumask. This is particularly important for smpboot threads
+ * to work.
+ */
+static void new_kthread_bind(struct task_struct *p, unsigned int cpu)
+{
+ unsigned long flags;
+
+ if (WARN_ON(!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)))
+ return;
+
+ /* It's safe because the task is inactive. */
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ __do_set_cpus_allowed(p, cpumask_of(cpu));
+ p->flags |= PF_NO_SETAFFINITY;
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+}
+#else
+#define new_kthread_bind(p, cpu) kthread_bind(p, cpu)
+#endif
+
/**
* kthread_create_on_cpu - Create a cpu bound kthread
* @threadfn: the function to run until signal_pending(current).
@@ -452,7 +480,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
cpu);
if (IS_ERR(p))
return p;
- kthread_bind(p, cpu);
+ new_kthread_bind(p, cpu);
/* CPU hotplug need to bind once again when unparking the thread. */
set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
to_kthread(p)->cpu = cpu;
diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
index 9c89ae8b337a..9f942cc15517 100644
--- a/kernel/livepatch/transition.c
+++ b/kernel/livepatch/transition.c
@@ -298,7 +298,7 @@ static int klp_check_stack(struct task_struct *task, char *err_buf)
static bool klp_try_switch_task(struct task_struct *task)
{
struct rq *rq;
- struct rq_flags flags;
+ struct rq_flags rf;
int ret;
bool success = false;
char err_buf[STACK_ERR_BUF_SIZE];
@@ -314,7 +314,7 @@ static bool klp_try_switch_task(struct task_struct *task)
* functions. If all goes well, switch the task to the target patch
* state.
*/
- rq = task_rq_lock(task, &flags);
+ rq = task_rq_lock(task, &rf);
if (task_running(rq, task) && task != current) {
snprintf(err_buf, STACK_ERR_BUF_SIZE,
@@ -333,7 +333,7 @@ static bool klp_try_switch_task(struct task_struct *task)
task->patch_state = klp_target_state;
done:
- task_rq_unlock(rq, task, &flags);
+ task_rq_unlock(rq, task, &rf);
/*
* Due to console deadlock issues, pr_debug() can't be used while
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 21fb5a5662b5..a04ffebc6b7a 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -16,15 +16,23 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
endif
+ifdef CONFIG_SCHED_MUQSS
+obj-y += MuQSS.o clock.o cputime.o
+obj-y += idle.o
+obj-y += wait.o wait_bit.o swait.o completion.o
+
+obj-$(CONFIG_SMP) += topology.o
+else
obj-y += core.o loadavg.o clock.o cputime.o
obj-y += idle.o fair.o rt.o deadline.o
obj-y += wait.o wait_bit.o swait.o completion.o
obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o pelt.o
obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
-obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
+endif
+obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
obj-$(CONFIG_MEMBARRIER) += membarrier.o
diff --git a/kernel/sched/MuQSS.c b/kernel/sched/MuQSS.c
new file mode 100644
index 000000000000..e260f932b992
--- /dev/null
+++ b/kernel/sched/MuQSS.c
@@ -0,0 +1,7496 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * kernel/sched/MuQSS.c, was kernel/sched.c
+ *
+ * Kernel scheduler and related syscalls
+ *
+ * Copyright (C) 1991-2002 Linus Torvalds
+ *
+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
+ * make semaphores SMP safe
+ * 1998-11-19 Implemented schedule_timeout() and related stuff
+ * by Andrea Arcangeli
+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
+ * hybrid priority-list and round-robin design with
+ * an array-switch method of distributing timeslices
+ * and per-CPU runqueues. Cleanups and useful suggestions
+ * by Davide Libenzi, preemptible kernel bits by Robert Love.
+ * 2003-09-03 Interactivity tuning by Con Kolivas.
+ * 2004-04-02 Scheduler domains code by Nick Piggin
+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
+ * fair scheduling design by Con Kolivas.
+ * 2007-05-05 Load balancing (smp-nice) and other improvements
+ * by Peter Williams
+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
+ * Thomas Gleixner, Mike Kravetz
+ * 2009-08-13 Brainfuck deadline scheduling policy by Con Kolivas deletes
+ * a whole lot of those previous things.
+ * 2016-10-01 Multiple Queue Skiplist Scheduler scalable evolution of BFS
+ * scheduler by Con Kolivas.
+ */
+
+#include <linux/sched/isolation.h>
+#include <linux/sched/loadavg.h>
+
+#include <linux/binfmts.h>
+#include <linux/blkdev.h>
+#include <linux/compat.h>
+#include <linux/context_tracking.h>
+#include <linux/cpuset.h>
+#include <linux/delayacct.h>
+#include <linux/init_task.h>
+#include <linux/kcov.h>
+#include <linux/kprobes.h>
+#include <linux/mmu_context.h>
+#include <linux/module.h>
+#include <linux/nmi.h>
+#include <linux/prefetch.h>
+#include <linux/profile.h>
+#include <linux/rcupdate_wait.h>
+#include <linux/sched.h>
+#include <linux/security.h>
+#include <linux/skip_list.h>
+#include <linux/syscalls.h>
+#include <linux/tick.h>
+#include <linux/wait_bit.h>
+
+#include <asm/irq_regs.h>
+#include <asm/switch_to.h>
+#include <asm/tlb.h>
+
+#include "../workqueue_internal.h"
+#include "../smpboot.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/sched.h>
+
+#include "MuQSS.h"
+
+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
+#define rt_task(p) rt_prio((p)->prio)
+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
+ (policy) == SCHED_RR)
+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
+
+#define is_idle_policy(policy) ((policy) == SCHED_IDLEPRIO)
+#define idleprio_task(p) unlikely(is_idle_policy((p)->policy))
+#define task_running_idle(p) unlikely((p)->prio == IDLE_PRIO)
+
+#define is_iso_policy(policy) ((policy) == SCHED_ISO)
+#define iso_task(p) unlikely(is_iso_policy((p)->policy))
+#define task_running_iso(p) unlikely((p)->prio == ISO_PRIO)
+
+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
+
+#define ISO_PERIOD (5 * HZ)
+
+#define STOP_PRIO (MAX_RT_PRIO - 1)
+
+/*
+ * Some helpers for converting to/from various scales. Use shifts to get
+ * approximate multiples of ten for less overhead.
+ */
+#define APPROX_NS_PS (1073741824) /* Approximate ns per second */
+#define JIFFIES_TO_NS(TIME) ((TIME) * (APPROX_NS_PS / HZ))
+#define JIFFY_NS (APPROX_NS_PS / HZ)
+#define JIFFY_US (1048576 / HZ)
+#define NS_TO_JIFFIES(TIME) ((TIME) / JIFFY_NS)
+#define HALF_JIFFY_NS (APPROX_NS_PS / HZ / 2)
+#define HALF_JIFFY_US (1048576 / HZ / 2)
+#define MS_TO_NS(TIME) ((TIME) << 20)
+#define MS_TO_US(TIME) ((TIME) << 10)
+#define NS_TO_MS(TIME) ((TIME) >> 20)
+#define NS_TO_US(TIME) ((TIME) >> 10)
+#define US_TO_NS(TIME) ((TIME) << 10)
+#define TICK_APPROX_NS ((APPROX_NS_PS+HZ/2)/HZ)
+
+#define RESCHED_US (100) /* Reschedule if less than this many μs left */
+
+void print_scheduler_version(void)
+{
+ printk(KERN_INFO "MuQSS CPU scheduler v0.192 by Con Kolivas.\n");
+}
+
+#define RQSHARE_NONE 0
+#define RQSHARE_SMT 1
+#define RQSHARE_MC 2
+#define RQSHARE_SMP 3
+#define RQSHARE_ALL 4
+
+/*
+ * This determines what level of runqueue sharing will be done and is
+ * configurable at boot time with the bootparam rqshare =
+ */
+static int rqshare __read_mostly = CONFIG_SHARERQ; /* Default RQSHARE_MC */
+
+static int __init set_rqshare(char *str)
+{
+ if (!strncmp(str, "none", 4)) {
+ rqshare = RQSHARE_NONE;
+ return 0;
+ }
+ if (!strncmp(str, "smt", 3)) {
+ rqshare = RQSHARE_SMT;
+ return 0;
+ }
+ if (!strncmp(str, "mc", 2)) {
+ rqshare = RQSHARE_MC;
+ return 0;
+ }
+ if (!strncmp(str, "smp", 3)) {
+ rqshare = RQSHARE_SMP;
+ return 0;
+ }
+ if (!strncmp(str, "all", 3)) {
+ rqshare = RQSHARE_ALL;
+ return 0;
+ }
+ return 1;
+}
+__setup("rqshare=", set_rqshare);
+
+/*
+ * This is the time all tasks within the same priority round robin.
+ * Value is in ms and set to a minimum of 6ms.
+ * Tunable via /proc interface.
+ */
+int rr_interval __read_mostly = 6;
+
+/*
+ * Tunable to choose whether to prioritise latency or throughput, simple
+ * binary yes or no
+ */
+int sched_interactive __read_mostly = 1;
+
+/*
+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
+ * are allowed to run five seconds as real time tasks. This is the total over
+ * all online cpus.
+ */
+int sched_iso_cpu __read_mostly = 70;
+
+/*
+ * sched_yield_type - Choose what sort of yield sched_yield will perform.
+ * 0: No yield.
+ * 1: Yield only to better priority/deadline tasks. (default)
+ * 2: Expire timeslice and recalculate deadline.
+ */
+int sched_yield_type __read_mostly = 1;
+
+/*
+ * The relative length of deadline for each priority(nice) level.
+ */
+static int prio_ratios[NICE_WIDTH] __read_mostly;
+
+
+/*
+ * The quota handed out to tasks of all priority levels when refilling their
+ * time_slice.
+ */
+static inline int timeslice(void)
+{
+ return MS_TO_US(rr_interval);
+}
+
+DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+
+#ifdef CONFIG_SMP
+/*
+ * Total number of runqueues. Equals number of CPUs when there is no runqueue
+ * sharing but is usually less with SMT/MC sharing of runqueues.
+ */
+static int total_runqueues __read_mostly = 1;
+
+static cpumask_t cpu_idle_map ____cacheline_aligned_in_smp;
+
+struct rq *cpu_rq(int cpu)
+{
+ return &per_cpu(runqueues, (cpu));
+}
+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
+
+/*
+ * For asym packing, by default the lower numbered cpu has higher priority.
+ */
+int __weak arch_asym_cpu_priority(int cpu)
+{
+ return -cpu;
+}
+
+int __weak arch_sd_sibling_asym_packing(void)
+{
+ return 0*SD_ASYM_PACKING;
+}
+
+#ifdef CONFIG_SCHED_SMT
+DEFINE_STATIC_KEY_FALSE(sched_smt_present);
+EXPORT_SYMBOL_GPL(sched_smt_present);
+#endif
+
+#else
+struct rq *uprq;
+#endif /* CONFIG_SMP */
+
+#include "stats.h"
+
+/*
+ * All common locking functions performed on rq->lock. rq->clock is local to
+ * the CPU accessing it so it can be modified just with interrupts disabled
+ * when we're not updating niffies.
+ * Looking up task_rq must be done under rq->lock to be safe.
+ */
+
+/*
+ * RQ-clock updating methods:
+ */
+
+#ifdef HAVE_SCHED_AVG_IRQ
+static void update_irq_load_avg(struct rq *rq, long delta);
+#else
+static inline void update_irq_load_avg(struct rq *rq, long delta) {}
+#endif
+
+static void update_rq_clock_task(struct rq *rq, s64 delta)
+{
+/*
+ * In theory, the compile should just see 0 here, and optimize out the call
+ * to sched_rt_avg_update. But I don't trust it...
+ */
+ s64 __maybe_unused steal = 0, irq_delta = 0;
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
+
+ /*
+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
+ * this case when a previous update_rq_clock() happened inside a
+ * {soft,}irq region.
+ *
+ * When this happens, we stop ->clock_task and only update the
+ * prev_irq_time stamp to account for the part that fit, so that a next
+ * update will consume the rest. This ensures ->clock_task is
+ * monotonic.
+ *
+ * It does however cause some slight miss-attribution of {soft,}irq
+ * time, a more accurate solution would be to update the irq_time using
+ * the current rq->clock timestamp, except that would require using
+ * atomic ops.
+ */
+ if (irq_delta > delta)
+ irq_delta = delta;
+
+ rq->prev_irq_time += irq_delta;
+ delta -= irq_delta;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+ if (static_key_false((&paravirt_steal_rq_enabled))) {
+ steal = paravirt_steal_clock(cpu_of(rq));
+ steal -= rq->prev_steal_time_rq;
+
+ if (unlikely(steal > delta))
+ steal = delta;
+
+ rq->prev_steal_time_rq += steal;
+ delta -= steal;
+ }
+#endif
+ rq->clock_task += delta;
+
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+ if (irq_delta + steal)
+ update_irq_load_avg(rq, irq_delta + steal);
+#endif
+}
+
+static inline void update_rq_clock(struct rq *rq)
+{
+ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
+
+ if (unlikely(delta < 0))
+ return;
+ rq->clock += delta;
+ update_rq_clock_task(rq, delta);
+}
+
+/*
+ * Niffies are a globally increasing nanosecond counter. They're only used by
+ * update_load_avg and time_slice_expired, however deadlines are based on them
+ * across CPUs. Update them whenever we will call one of those functions, and
+ * synchronise them across CPUs whenever we hold both runqueue locks.
+ */
+static inline void update_clocks(struct rq *rq)
+{
+ s64 ndiff, minndiff;
+ long jdiff;
+
+ update_rq_clock(rq);
+ ndiff = rq->clock - rq->old_clock;
+ rq->old_clock = rq->clock;
+ jdiff = jiffies - rq->last_jiffy;
+
+ /* Subtract any niffies added by balancing with other rqs */
+ ndiff -= rq->niffies - rq->last_niffy;
+ minndiff = JIFFIES_TO_NS(jdiff) - rq->niffies + rq->last_jiffy_niffies;
+ if (minndiff < 0)
+ minndiff = 0;
+ ndiff = max(ndiff, minndiff);
+ rq->niffies += ndiff;
+ rq->last_niffy = rq->niffies;
+ if (jdiff) {
+ rq->last_jiffy += jdiff;
+ rq->last_jiffy_niffies = rq->niffies;
+ }
+}
+
+/*
+ * Any time we have two runqueues locked we use that as an opportunity to
+ * synchronise niffies to the highest value as idle ticks may have artificially
+ * kept niffies low on one CPU and the truth can only be later.
+ */
+static inline void synchronise_niffies(struct rq *rq1, struct rq *rq2)
+{
+ if (rq1->niffies > rq2->niffies)
+ rq2->niffies = rq1->niffies;
+ else
+ rq1->niffies = rq2->niffies;
+}
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+
+/* For when we know rq1 != rq2 */
+static inline void __double_rq_lock(struct rq *rq1, struct rq *rq2)
+ __acquires(rq1->lock)
+ __acquires(rq2->lock)
+{
+ if (rq1 < rq2) {
+ raw_spin_lock(rq1->lock);
+ raw_spin_lock_nested(rq2->lock, SINGLE_DEPTH_NESTING);
+ } else {
+ raw_spin_lock(rq2->lock);
+ raw_spin_lock_nested(rq1->lock, SINGLE_DEPTH_NESTING);
+ }
+}
+
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+ __acquires(rq1->lock)
+ __acquires(rq2->lock)
+{
+ BUG_ON(!irqs_disabled());
+ if (rq1->lock == rq2->lock) {
+ raw_spin_lock(rq1->lock);
+ __acquire(rq2->lock); /* Fake it out ;) */
+ } else
+ __double_rq_lock(rq1, rq2);
+ synchronise_niffies(rq1, rq2);
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+ __releases(rq1->lock)
+ __releases(rq2->lock)
+{
+ raw_spin_unlock(rq1->lock);
+ if (rq1->lock != rq2->lock)
+ raw_spin_unlock(rq2->lock);
+ else
+ __release(rq2->lock);
+}
+
+static inline void lock_all_rqs(void)
+{
+ int cpu;
+
+ preempt_disable();
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+
+ do_raw_spin_lock(rq->lock);
+ }
+}
+
+static inline void unlock_all_rqs(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+
+ do_raw_spin_unlock(rq->lock);
+ }
+ preempt_enable();
+}
+
+/* Specially nest trylock an rq */
+static inline bool trylock_rq(struct rq *this_rq, struct rq *rq)
+{
+ if (unlikely(!do_raw_spin_trylock(rq->lock)))
+ return false;
+ spin_acquire(&rq->lock->dep_map, SINGLE_DEPTH_NESTING, 1, _RET_IP_);
+ synchronise_niffies(this_rq, rq);
+ return true;
+}
+
+/* Unlock a specially nested trylocked rq */
+static inline void unlock_rq(struct rq *rq)
+{
+ spin_release(&rq->lock->dep_map, 1, _RET_IP_);
+ do_raw_spin_unlock(rq->lock);
+}
+
+/*
+ * cmpxchg based fetch_or, macro so it works for different integer types
+ */
+#define fetch_or(ptr, mask) \
+ ({ \
+ typeof(ptr) _ptr = (ptr); \
+ typeof(mask) _mask = (mask); \
+ typeof(*_ptr) _old, _val = *_ptr; \
+ \
+ for (;;) { \
+ _old = cmpxchg(_ptr, _val, _val | _mask); \
+ if (_old == _val) \
+ break; \
+ _val = _old; \
+ } \
+ _old; \
+})
+
+#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
+/*
+ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
+ * this avoids any races wrt polling state changes and thereby avoids
+ * spurious IPIs.
+ */
+static bool set_nr_and_not_polling(struct task_struct *p)
+{
+ struct thread_info *ti = task_thread_info(p);
+ return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
+}
+
+/*
+ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
+ *
+ * If this returns true, then the idle task promises to call
+ * sched_ttwu_pending() and reschedule soon.
+ */
+static bool set_nr_if_polling(struct task_struct *p)
+{
+ struct thread_info *ti = task_thread_info(p);
+ typeof(ti->flags) old, val = READ_ONCE(ti->flags);
+
+ for (;;) {
+ if (!(val & _TIF_POLLING_NRFLAG))
+ return false;
+ if (val & _TIF_NEED_RESCHED)
+ return true;
+ old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
+ if (old == val)
+ break;
+ val = old;
+ }
+ return true;
+}
+
+#else
+static bool set_nr_and_not_polling(struct task_struct *p)
+{
+ set_tsk_need_resched(p);
+ return true;
+}
+
+#ifdef CONFIG_SMP
+static bool set_nr_if_polling(struct task_struct *p)
+{
+ return false;
+}
+#endif
+#endif
+
+static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
+{
+ struct wake_q_node *node = &task->wake_q;
+
+ /*
+ * Atomically grab the task, if ->wake_q is !nil already it means
+ * its already queued (either by us or someone else) and will get the
+ * wakeup due to that.
+ *
+ * In order to ensure that a pending wakeup will observe our pending
+ * state, even in the failed case, an explicit smp_mb() must be used.
+ */
+ smp_mb__before_atomic();
+ if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
+ return false;
+
+ /*
+ * The head is context local, there can be no concurrency.
+ */
+ *head->lastp = node;
+ head->lastp = &node->next;
+ return true;
+}
+
+/**
+ * wake_q_add() - queue a wakeup for 'later' waking.
+ * @head: the wake_q_head to add @task to
+ * @task: the task to queue for 'later' wakeup
+ *
+ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
+ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
+ * instantly.
+ *
+ * This function must be used as-if it were wake_up_process(); IOW the task
+ * must be ready to be woken at this location.
+ */
+void wake_q_add(struct wake_q_head *head, struct task_struct *task)
+{
+ if (__wake_q_add(head, task))
+ get_task_struct(task);
+}
+
+/**
+ * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
+ * @head: the wake_q_head to add @task to
+ * @task: the task to queue for 'later' wakeup
+ *
+ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
+ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
+ * instantly.
+ *
+ * This function must be used as-if it were wake_up_process(); IOW the task
+ * must be ready to be woken at this location.
+ *
+ * This function is essentially a task-safe equivalent to wake_q_add(). Callers
+ * that already hold reference to @task can call the 'safe' version and trust
+ * wake_q to do the right thing depending whether or not the @task is already
+ * queued for wakeup.
+ */
+void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
+{
+ if (!__wake_q_add(head, task))
+ put_task_struct(task);
+}
+
+void wake_up_q(struct wake_q_head *head)
+{
+ struct wake_q_node *node = head->first;
+
+ while (node != WAKE_Q_TAIL) {
+ struct task_struct *task;
+
+ task = container_of(node, struct task_struct, wake_q);
+ BUG_ON(!task);
+ /* Task can safely be re-inserted now */
+ node = node->next;
+ task->wake_q.next = NULL;
+
+ /*
+ * wake_up_process() executes a full barrier, which pairs with
+ * the queueing in wake_q_add() so as not to miss wakeups.
+ */
+ wake_up_process(task);
+ put_task_struct(task);
+ }
+}
+
+static inline void smp_sched_reschedule(int cpu)
+{
+ if (likely(cpu_online(cpu)))
+ smp_send_reschedule(cpu);
+}
+
+/*
+ * resched_task - mark a task 'to be rescheduled now'.
+ *
+ * On UP this means the setting of the need_resched flag, on SMP it
+ * might also involve a cross-CPU call to trigger the scheduler on
+ * the target CPU.
+ */
+void resched_task(struct task_struct *p)
+{
+ int cpu;
+#ifdef CONFIG_LOCKDEP
+ /* Kernel threads call this when creating workqueues while still
+ * inactive from __kthread_bind_mask, holding only the pi_lock */
+ if (!(p->flags & PF_KTHREAD)) {
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_held(rq->lock);
+ }
+#endif
+ if (test_tsk_need_resched(p))
+ return;
+
+ cpu = task_cpu(p);
+ if (cpu == smp_processor_id()) {
+ set_tsk_need_resched(p);
+ set_preempt_need_resched();
+ return;
+ }
+
+ if (set_nr_and_not_polling(p))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+}
+
+/*
+ * A task that is not running or queued will not have a node set.
+ * A task that is queued but not running will have a node set.
+ * A task that is currently running will have ->on_cpu set but no node set.
+ */
+static inline bool task_queued(struct task_struct *p)
+{
+ return !skiplist_node_empty(&p->node);
+}
+
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
+static inline void resched_if_idle(struct rq *rq);
+
+/* Dodgy workaround till we figure out where the softirqs are going */
+static inline void do_pending_softirq(struct rq *rq, struct task_struct *next)
+{
+ if (unlikely(next == rq->idle && local_softirq_pending() && !in_interrupt()))
+ do_softirq_own_stack();
+}
+
+static inline bool deadline_before(u64 deadline, u64 time)
+{
+ return (deadline < time);
+}
+
+/*
+ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
+ * is the key to everything. It distributes cpu fairly amongst tasks of the
+ * same nice value, it proportions cpu according to nice level, it means the
+ * task that last woke up the longest ago has the earliest deadline, thus
+ * ensuring that interactive tasks get low latency on wake up. The CPU
+ * proportion works out to the square of the virtual deadline difference, so
+ * this equation will give nice 19 3% CPU compared to nice 0.
+ */
+static inline u64 prio_deadline_diff(int user_prio)
+{
+ return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128));
+}
+
+static inline u64 task_deadline_diff(struct task_struct *p)
+{
+ return prio_deadline_diff(TASK_USER_PRIO(p));
+}
+
+static inline u64 static_deadline_diff(int static_prio)
+{
+ return prio_deadline_diff(USER_PRIO(static_prio));
+}
+
+static inline int longest_deadline_diff(void)
+{
+ return prio_deadline_diff(39);
+}
+
+static inline int ms_longest_deadline_diff(void)
+{
+ return NS_TO_MS(longest_deadline_diff());
+}
+
+static inline bool rq_local(struct rq *rq);
+
+#ifndef SCHED_CAPACITY_SCALE
+#define SCHED_CAPACITY_SCALE 1024
+#endif
+
+static inline int rq_load(struct rq *rq)
+{
+ return rq->nr_running;
+}
+
+/*
+ * Update the load average for feeding into cpu frequency governors. Use a
+ * rough estimate of a rolling average with ~ time constant of 32ms.
+ * 80/128 ~ 0.63. * 80 / 32768 / 128 == * 5 / 262144
+ * Make sure a call to update_clocks has been made before calling this to get
+ * an updated rq->niffies.
+ */
+static void update_load_avg(struct rq *rq, unsigned int flags)
+{
+ long us_interval, load;
+ unsigned long curload;
+
+ us_interval = NS_TO_US(rq->niffies - rq->load_update);
+ if (unlikely(us_interval <= 0))
+ return;
+
+ curload = rq_load(rq);
+ load = rq->load_avg - (rq->load_avg * us_interval * 5 / 262144);
+ if (unlikely(load < 0))
+ load = 0;
+ load += curload * curload * SCHED_CAPACITY_SCALE * us_interval * 5 / 262144;
+ rq->load_avg = load;
+
+ rq->load_update = rq->niffies;
+ update_irq_load_avg(rq, 0);
+ if (likely(rq_local(rq)))
+ cpufreq_trigger(rq, flags);
+}
+
+#ifdef HAVE_SCHED_AVG_IRQ
+/*
+ * IRQ variant of update_load_avg below. delta is actually time in nanoseconds
+ * here so we scale curload to how long it's been since the last update.
+ */
+static void update_irq_load_avg(struct rq *rq, long delta)
+{
+ long us_interval, load;
+ unsigned long curload;
+
+ us_interval = NS_TO_US(rq->niffies - rq->irq_load_update);
+ if (unlikely(us_interval <= 0))
+ return;
+
+ curload = NS_TO_US(delta) / us_interval;
+ load = rq->irq_load_avg - (rq->irq_load_avg * us_interval * 5 / 262144);
+ if (unlikely(load < 0))
+ load = 0;
+ load += curload * curload * SCHED_CAPACITY_SCALE * us_interval * 5 / 262144;
+ rq->irq_load_avg = load;
+
+ rq->irq_load_update = rq->niffies;
+}
+#endif
+
+/*
+ * Removing from the runqueue. Enter with rq locked. Deleting a task
+ * from the skip list is done via the stored node reference in the task struct
+ * and does not require a full look up. Thus it occurs in O(k) time where k
+ * is the "level" of the list the task was stored at - usually < 4, max 8.
+ */
+static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
+{
+ skiplist_delete(rq->sl, &p->node);
+ rq->best_key = rq->node->next[0]->key;
+ update_clocks(rq);
+
+ if (!(flags & DEQUEUE_SAVE)) {
+ sched_info_dequeued(rq, p);
+ psi_dequeue(p, flags & DEQUEUE_SLEEP);
+ }
+ rq->nr_running--;
+ if (rt_task(p))
+ rq->rt_nr_running--;
+ update_load_avg(rq, flags);
+}
+
+#ifdef CONFIG_PREEMPT_RCU
+static bool rcu_read_critical(struct task_struct *p)
+{
+ return p->rcu_read_unlock_special.b.blocked;
+}
+#else /* CONFIG_PREEMPT_RCU */
+#define rcu_read_critical(p) (false)
+#endif /* CONFIG_PREEMPT_RCU */
+
+/*
+ * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as
+ * an idle task, we ensure none of the following conditions are met.
+ */
+static bool idleprio_suitable(struct task_struct *p)
+{
+ return (!(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)) &&
+ !signal_pending(p) && !rcu_read_critical(p) && !freezing(p));
+}
+
+/*
+ * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check
+ * that the iso_refractory flag is not set.
+ */
+static inline bool isoprio_suitable(struct rq *rq)
+{
+ return !rq->iso_refractory;
+}
+
+/*
+ * Adding to the runqueue. Enter with rq locked.
+ */
+static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
+{
+ unsigned int randseed, cflags = 0;
+ u64 sl_id;
+
+ if (!rt_task(p)) {
+ /* Check it hasn't gotten rt from PI */
+ if ((idleprio_task(p) && idleprio_suitable(p)) ||
+ (iso_task(p) && isoprio_suitable(rq)))
+ p->prio = p->normal_prio;
+ else
+ p->prio = NORMAL_PRIO;
+ } else
+ rq->rt_nr_running++;
+ /*
+ * The sl_id key passed to the skiplist generates a sorted list.
+ * Realtime and sched iso tasks run FIFO so they only need be sorted
+ * according to priority. The skiplist will put tasks of the same
+ * key inserted later in FIFO order. Tasks of sched normal, batch
+ * and idleprio are sorted according to their deadlines. Idleprio
+ * tasks are offset by an impossibly large deadline value ensuring
+ * they get sorted into last positions, but still according to their
+ * own deadlines. This creates a "landscape" of skiplists running
+ * from priority 0 realtime in first place to the lowest priority
+ * idleprio tasks last. Skiplist insertion is an O(log n) process.
+ */
+ if (p->prio <= ISO_PRIO) {
+ sl_id = p->prio;
+ } else {
+ sl_id = p->deadline;
+ if (idleprio_task(p)) {
+ if (p->prio == IDLE_PRIO)
+ sl_id |= 0xF000000000000000;
+ else
+ sl_id += longest_deadline_diff();
+ }
+ }
+ /*
+ * Some architectures don't have better than microsecond resolution
+ * so mask out ~microseconds as the random seed for skiplist insertion.
+ */
+ update_clocks(rq);
+ if (!(flags & ENQUEUE_RESTORE)) {
+ sched_info_queued(rq, p);
+ psi_enqueue(p, flags & ENQUEUE_WAKEUP);
+ }
+
+ randseed = (rq->niffies >> 10) & 0xFFFFFFFF;
+ skiplist_insert(rq->sl, &p->node, sl_id, p, randseed);
+ rq->best_key = rq->node->next[0]->key;
+ if (p->in_iowait)
+ cflags |= SCHED_CPUFREQ_IOWAIT;
+ rq->nr_running++;
+ update_load_avg(rq, cflags);
+}
+
+/*
+ * Returns the relative length of deadline all compared to the shortest
+ * deadline which is that of nice -20.
+ */
+static inline int task_prio_ratio(struct task_struct *p)
+{
+ return prio_ratios[TASK_USER_PRIO(p)];
+}
+
+/*
+ * task_timeslice - all tasks of all priorities get the exact same timeslice
+ * length. CPU distribution is handled by giving different deadlines to
+ * tasks of different priorities. Use 128 as the base value for fast shifts.
+ */
+static inline int task_timeslice(struct task_struct *p)
+{
+ return (rr_interval * task_prio_ratio(p) / 128);
+}
+
+#ifdef CONFIG_SMP
+/* Entered with rq locked */
+static inline void resched_if_idle(struct rq *rq)
+{
+ if (rq_idle(rq))
+ resched_task(rq->curr);
+}
+
+static inline bool rq_local(struct rq *rq)
+{
+ return (rq->cpu == smp_processor_id());
+}
+#ifdef CONFIG_SMT_NICE
+static const cpumask_t *thread_cpumask(int cpu);
+
+/* Find the best real time priority running on any SMT siblings of cpu and if
+ * none are running, the static priority of the best deadline task running.
+ * The lookups to the other runqueues is done lockless as the occasional wrong
+ * value would be harmless. */
+static int best_smt_bias(struct rq *this_rq)
+{
+ int other_cpu, best_bias = 0;
+
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
+ struct rq *rq = cpu_rq(other_cpu);
+
+ if (rq_idle(rq))
+ continue;
+ if (unlikely(!rq->online))
+ continue;
+ if (!rq->rq_mm)
+ continue;
+ if (likely(rq->rq_smt_bias > best_bias))
+ best_bias = rq->rq_smt_bias;
+ }
+ return best_bias;
+}
+
+static int task_prio_bias(struct task_struct *p)
+{
+ if (rt_task(p))
+ return 1 << 30;
+ else if (task_running_iso(p))
+ return 1 << 29;
+ else if (task_running_idle(p))
+ return 0;
+ return MAX_PRIO - p->static_prio;
+}
+
+static bool smt_always_schedule(struct task_struct __maybe_unused *p, struct rq __maybe_unused *this_rq)
+{
+ return true;
+}
+
+static bool (*smt_schedule)(struct task_struct *p, struct rq *this_rq) = &smt_always_schedule;
+
+/* We've already decided p can run on CPU, now test if it shouldn't for SMT
+ * nice reasons. */
+static bool smt_should_schedule(struct task_struct *p, struct rq *this_rq)
+{
+ int best_bias, task_bias;
+
+ /* Kernel threads always run */
+ if (unlikely(!p->mm))
+ return true;
+ if (rt_task(p))
+ return true;
+ if (!idleprio_suitable(p))
+ return true;
+ best_bias = best_smt_bias(this_rq);
+ /* The smt siblings are all idle or running IDLEPRIO */
+ if (best_bias < 1)
+ return true;
+ task_bias = task_prio_bias(p);
+ if (task_bias < 1)
+ return false;
+ if (task_bias >= best_bias)
+ return true;
+ /* Dither 25% cpu of normal tasks regardless of nice difference */
+ if (best_bias % 4 == 1)
+ return true;
+ /* Sorry, you lose */
+ return false;
+}
+#else /* CONFIG_SMT_NICE */
+#define smt_schedule(p, this_rq) (true)
+#endif /* CONFIG_SMT_NICE */
+
+static inline void atomic_set_cpu(int cpu, cpumask_t *cpumask)
+{
+ set_bit(cpu, (volatile unsigned long *)cpumask);
+}
+
+/*
+ * The cpu_idle_map stores a bitmap of all the CPUs currently idle to
+ * allow easy lookup of whether any suitable idle CPUs are available.
+ * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the
+ * idle_cpus variable than to do a full bitmask check when we are busy. The
+ * bits are set atomically but read locklessly as occasional false positive /
+ * negative is harmless.
+ */
+static inline void set_cpuidle_map(int cpu)
+{
+ if (likely(cpu_online(cpu)))
+ atomic_set_cpu(cpu, &cpu_idle_map);
+}
+
+static inline void atomic_clear_cpu(int cpu, cpumask_t *cpumask)
+{
+ clear_bit(cpu, (volatile unsigned long *)cpumask);
+}
+
+static inline void clear_cpuidle_map(int cpu)
+{
+ atomic_clear_cpu(cpu, &cpu_idle_map);
+}
+
+static bool suitable_idle_cpus(struct task_struct *p)
+{
+ return (cpumask_intersects(&p->cpus_allowed, &cpu_idle_map));
+}
+
+/*
+ * Resched current on rq. We don't know if rq is local to this CPU nor if it
+ * is locked so we do not use an intermediate variable for the task to avoid
+ * having it dereferenced.
+ */
+static void resched_curr(struct rq *rq)
+{
+ int cpu;
+
+ if (test_tsk_need_resched(rq->curr))
+ return;
+
+ rq->preempt = rq->curr;
+ cpu = rq->cpu;
+
+ /* We're doing this without holding the rq lock if it's not task_rq */
+
+ if (cpu == smp_processor_id()) {
+ set_tsk_need_resched(rq->curr);
+ set_preempt_need_resched();
+ return;
+ }
+
+ if (set_nr_and_not_polling(rq->curr))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+}
+
+#define CPUIDLE_DIFF_THREAD (1)
+#define CPUIDLE_DIFF_CORE (2)
+#define CPUIDLE_CACHE_BUSY (4)
+#define CPUIDLE_DIFF_CPU (8)
+#define CPUIDLE_THREAD_BUSY (16)
+#define CPUIDLE_DIFF_NODE (32)
+
+/*
+ * The best idle CPU is chosen according to the CPUIDLE ranking above where the
+ * lowest value would give the most suitable CPU to schedule p onto next. The
+ * order works out to be the following:
+ *
+ * Same thread, idle or busy cache, idle or busy threads
+ * Other core, same cache, idle or busy cache, idle threads.
+ * Same node, other CPU, idle cache, idle threads.
+ * Same node, other CPU, busy cache, idle threads.
+ * Other core, same cache, busy threads.
+ * Same node, other CPU, busy threads.
+ * Other node, other CPU, idle cache, idle threads.
+ * Other node, other CPU, busy cache, idle threads.
+ * Other node, other CPU, busy threads.
+ */
+static int best_mask_cpu(int best_cpu, struct rq *rq, cpumask_t *tmpmask)
+{
+ int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THREAD_BUSY |
+ CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY | CPUIDLE_DIFF_CORE |
+ CPUIDLE_DIFF_THREAD;
+ int cpu_tmp;
+
+ if (cpumask_test_cpu(best_cpu, tmpmask))
+ goto out;
+
+ for_each_cpu(cpu_tmp, tmpmask) {
+ int ranking, locality;
+ struct rq *tmp_rq;
+
+ ranking = 0;
+ tmp_rq = cpu_rq(cpu_tmp);
+
+ locality = rq->cpu_locality[cpu_tmp];
+#ifdef CONFIG_NUMA
+ if (locality > 3)
+ ranking |= CPUIDLE_DIFF_NODE;
+ else
+#endif
+ if (locality > 2)
+ ranking |= CPUIDLE_DIFF_CPU;
+#ifdef CONFIG_SCHED_MC
+ else if (locality == 2)
+ ranking |= CPUIDLE_DIFF_CORE;
+ else if (!(tmp_rq->cache_idle(tmp_rq)))
+ ranking |= CPUIDLE_CACHE_BUSY;
+#endif
+#ifdef CONFIG_SCHED_SMT
+ if (locality == 1)
+ ranking |= CPUIDLE_DIFF_THREAD;
+ if (!(tmp_rq->siblings_idle(tmp_rq)))
+ ranking |= CPUIDLE_THREAD_BUSY;
+#endif
+ if (ranking < best_ranking) {
+ best_cpu = cpu_tmp;
+ best_ranking = ranking;
+ }
+ }
+out:
+ return best_cpu;
+}
+
+bool cpus_share_cache(int this_cpu, int that_cpu)
+{
+ struct rq *this_rq = cpu_rq(this_cpu);
+
+ return (this_rq->cpu_locality[that_cpu] < 3);
+}
+
+/* As per resched_curr but only will resched idle task */
+static inline void resched_idle(struct rq *rq)
+{
+ if (test_tsk_need_resched(rq->idle))
+ return;
+
+ rq->preempt = rq->idle;
+
+ set_tsk_need_resched(rq->idle);
+
+ if (rq_local(rq)) {
+ set_preempt_need_resched();
+ return;
+ }
+
+ smp_sched_reschedule(rq->cpu);
+}
+
+static struct rq *resched_best_idle(struct task_struct *p, int cpu)
+{
+ cpumask_t tmpmask;
+ struct rq *rq;
+ int best_cpu;
+
+ cpumask_and(&tmpmask, &p->cpus_allowed, &cpu_idle_map);
+ best_cpu = best_mask_cpu(cpu, task_rq(p), &tmpmask);
+ rq = cpu_rq(best_cpu);
+ if (!smt_schedule(p, rq))
+ return NULL;
+ rq->preempt = p;
+ resched_idle(rq);
+ return rq;
+}
+
+static inline void resched_suitable_idle(struct task_struct *p)
+{
+ if (suitable_idle_cpus(p))
+ resched_best_idle(p, task_cpu(p));
+}
+
+static inline struct rq *rq_order(struct rq *rq, int cpu)
+{
+ return rq->rq_order[cpu];
+}
+#else /* CONFIG_SMP */
+static inline void set_cpuidle_map(int cpu)
+{
+}
+
+static inline void clear_cpuidle_map(int cpu)
+{
+}
+
+static inline bool suitable_idle_cpus(struct task_struct *p)
+{
+ return uprq->curr == uprq->idle;
+}
+
+static inline void resched_suitable_idle(struct task_struct *p)
+{
+}
+
+static inline void resched_curr(struct rq *rq)
+{
+ resched_task(rq->curr);
+}
+
+static inline void resched_if_idle(struct rq *rq)
+{
+}
+
+static inline bool rq_local(struct rq *rq)
+{
+ return true;
+}
+
+static inline struct rq *rq_order(struct rq *rq, int cpu)
+{
+ return rq;
+}
+
+static inline bool smt_schedule(struct task_struct *p, struct rq *rq)
+{
+ return true;
+}
+#endif /* CONFIG_SMP */
+
+static inline int normal_prio(struct task_struct *p)
+{
+ if (has_rt_policy(p))
+ return MAX_RT_PRIO - 1 - p->rt_priority;
+ if (idleprio_task(p))
+ return IDLE_PRIO;
+ if (iso_task(p))
+ return ISO_PRIO;
+ return NORMAL_PRIO;
+}
+
+/*
+ * Calculate the current priority, i.e. the priority
+ * taken into account by the scheduler. This value might
+ * be boosted by RT tasks as it will be RT if the task got
+ * RT-boosted. If not then it returns p->normal_prio.
+ */
+static int effective_prio(struct task_struct *p)
+{
+ p->normal_prio = normal_prio(p);
+ /*
+ * If we are RT tasks or we were boosted to RT priority,
+ * keep the priority unchanged. Otherwise, update priority
+ * to the normal priority:
+ */
+ if (!rt_prio(p->prio))
+ return p->normal_prio;
+ return p->prio;
+}
+
+/*
+ * activate_task - move a task to the runqueue. Enter with rq locked.
+ */
+static void activate_task(struct task_struct *p, struct rq *rq, int flags)
+{
+ resched_if_idle(rq);
+
+ /*
+ * Sleep time is in units of nanosecs, so shift by 20 to get a
+ * milliseconds-range estimation of the amount of time that the task
+ * spent sleeping:
+ */
+ if (unlikely(prof_on == SLEEP_PROFILING)) {
+ if (p->state == TASK_UNINTERRUPTIBLE)
+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
+ (rq->niffies - p->last_ran) >> 20);
+ }
+
+ p->prio = effective_prio(p);
+ if (task_contributes_to_load(p))
+ rq->nr_uninterruptible--;
+
+ enqueue_task(rq, p, flags);
+ p->on_rq = TASK_ON_RQ_QUEUED;
+}
+
+/*
+ * deactivate_task - If it's running, it's not on the runqueue and we can just
+ * decrement the nr_running. Enter with rq locked.
+ */
+static inline void deactivate_task(struct task_struct *p, struct rq *rq, int flags)
+{
+ if (task_contributes_to_load(p))
+ rq->nr_uninterruptible++;
+
+ p->on_rq = 0;
+ if (!(flags & DEQUEUE_SAVE)) {
+ sched_info_dequeued(rq, p);
+ psi_dequeue(p, flags & DEQUEUE_SLEEP);
+ }
+}
+
+#ifdef CONFIG_SMP
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
+{
+ struct rq *rq;
+
+ if (task_cpu(p) == new_cpu)
+ return;
+
+ /* Do NOT call set_task_cpu on a currently queued task as we will not
+ * be reliably holding the rq lock after changing CPU. */
+ BUG_ON(task_queued(p));
+ rq = task_rq(p);
+
+#ifdef CONFIG_LOCKDEP
+ /*
+ * The caller should hold either p->pi_lock or rq->lock, when changing
+ * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
+ *
+ * Furthermore, all task_rq users should acquire both locks, see
+ * task_rq_lock().
+ */
+ WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
+ lockdep_is_held(rq->lock)));
+#endif
+
+ trace_sched_migrate_task(p, new_cpu);
+ rseq_migrate(p);
+ perf_event_task_migrate(p);
+
+ /*
+ * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+ * successfully executed on another CPU. We must ensure that updates of
+ * per-task data have been completed by this moment.
+ */
+ smp_wmb();
+
+ p->wake_cpu = new_cpu;
+
+ if (task_running(rq, p)) {
+ /*
+ * We should only be calling this on a running task if we're
+ * holding rq lock.
+ */
+ lockdep_assert_held(rq->lock);
+
+ /*
+ * We can't change the task_thread_info CPU on a running task
+ * as p will still be protected by the rq lock of the CPU it
+ * is still running on so we only set the wake_cpu for it to be
+ * lazily updated once off the CPU.
+ */
+ return;
+ }
+
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+ WRITE_ONCE(p->cpu, new_cpu);
+#else
+ WRITE_ONCE(task_thread_info(p)->cpu, new_cpu);
+#endif
+ /* We're no longer protecting p after this point since we're holding
+ * the wrong runqueue lock. */
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Move a task off the runqueue and take it to a cpu for it will
+ * become the running task.
+ */
+static inline void take_task(struct rq *rq, int cpu, struct task_struct *p)
+{
+ struct rq *p_rq = task_rq(p);
+
+ dequeue_task(p_rq, p, DEQUEUE_SAVE);
+ if (p_rq != rq) {
+ sched_info_dequeued(p_rq, p);
+ sched_info_queued(rq, p);
+ }
+ set_task_cpu(p, cpu);
+}
+
+/*
+ * Returns a descheduling task to the runqueue unless it is being
+ * deactivated.
+ */
+static inline void return_task(struct task_struct *p, struct rq *rq,
+ int cpu, bool deactivate)
+{
+ if (deactivate)
+ deactivate_task(p, rq, DEQUEUE_SLEEP);
+ else {
+#ifdef CONFIG_SMP
+ /*
+ * set_task_cpu was called on the running task that doesn't
+ * want to deactivate so it has to be enqueued to a different
+ * CPU and we need its lock. Tag it to be moved with as the
+ * lock is dropped in finish_lock_switch.
+ */
+ if (unlikely(p->wake_cpu != cpu))
+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
+ else
+#endif
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ }
+}
+
+/* Enter with rq lock held. We know p is on the local cpu */
+static inline void __set_tsk_resched(struct task_struct *p)
+{
+ set_tsk_need_resched(p);
+ set_preempt_need_resched();
+}
+
+/**
+ * task_curr - is this task currently executing on a CPU?
+ * @p: the task in question.
+ *
+ * Return: 1 if the task is currently executing. 0 otherwise.
+ */
+inline int task_curr(const struct task_struct *p)
+{
+ return cpu_curr(task_cpu(p)) == p;
+}
+
+#ifdef CONFIG_SMP
+/*
+ * wait_task_inactive - wait for a thread to unschedule.
+ *
+ * If @match_state is nonzero, it's the @p->state value just checked and
+ * not expected to change. If it changes, i.e. @p might have woken up,
+ * then return zero. When we succeed in waiting for @p to be off its CPU,
+ * we return a positive number (its total switch count). If a second call
+ * a short while later returns the same number, the caller can be sure that
+ * @p has remained unscheduled the whole time.
+ *
+ * The caller must ensure that the task *will* unschedule sometime soon,
+ * else this function might spin for a *long* time. This function can't
+ * be called with interrupts off, or it may introduce deadlock with
+ * smp_call_function() if an IPI is sent by the same process we are
+ * waiting to become inactive.
+ */
+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
+{
+ int running, queued;
+ struct rq_flags rf;
+ unsigned long ncsw;
+ struct rq *rq;
+
+ for (;;) {
+ rq = task_rq(p);
+
+ /*
+ * If the task is actively running on another CPU
+ * still, just relax and busy-wait without holding
+ * any locks.
+ *
+ * NOTE! Since we don't hold any locks, it's not
+ * even sure that "rq" stays as the right runqueue!
+ * But we don't care, since this will return false
+ * if the runqueue has changed and p is actually now
+ * running somewhere else!
+ */
+ while (task_running(rq, p)) {
+ if (match_state && unlikely(p->state != match_state))
+ return 0;
+ cpu_relax();
+ }
+
+ /*
+ * Ok, time to look more closely! We need the rq
+ * lock now, to be *sure*. If we're wrong, we'll
+ * just go back and repeat.
+ */
+ rq = task_rq_lock(p, &rf);
+ trace_sched_wait_task(p);
+ running = task_running(rq, p);
+ queued = task_on_rq_queued(p);
+ ncsw = 0;
+ if (!match_state || p->state == match_state)
+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
+ task_rq_unlock(rq, p, &rf);
+
+ /*
+ * If it changed from the expected state, bail out now.
+ */
+ if (unlikely(!ncsw))
+ break;
+
+ /*
+ * Was it really running after all now that we
+ * checked with the proper locks actually held?
+ *
+ * Oops. Go back and try again..
+ */
+ if (unlikely(running)) {
+ cpu_relax();
+ continue;
+ }
+
+ /*
+ * It's not enough that it's not actively running,
+ * it must be off the runqueue _entirely_, and not
+ * preempted!
+ *
+ * So if it was still runnable (but just not actively
+ * running right now), it's preempted, and we should
+ * yield - it could be a while.
+ */
+ if (unlikely(queued)) {
+ ktime_t to = NSEC_PER_SEC / HZ;
+
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ schedule_hrtimeout(&to, HRTIMER_MODE_REL);
+ continue;
+ }
+
+ /*
+ * Ahh, all good. It wasn't running, and it wasn't
+ * runnable, which means that it will never become
+ * running in the future either. We're all done!
+ */
+ break;
+ }
+
+ return ncsw;
+}
+
+/***
+ * kick_process - kick a running thread to enter/exit the kernel
+ * @p: the to-be-kicked thread
+ *
+ * Cause a process which is running on another CPU to enter
+ * kernel-mode, without any delay. (to get signals handled.)
+ *
+ * NOTE: this function doesn't have to take the runqueue lock,
+ * because all it wants to ensure is that the remote task enters
+ * the kernel. If the IPI races and the task has been migrated
+ * to another CPU then no harm is done and the purpose has been
+ * achieved as well.
+ */
+void kick_process(struct task_struct *p)
+{
+ int cpu;
+
+ preempt_disable();
+ cpu = task_cpu(p);
+ if ((cpu != smp_processor_id()) && task_curr(p))
+ smp_sched_reschedule(cpu);
+ preempt_enable();
+}
+EXPORT_SYMBOL_GPL(kick_process);
+#endif
+
+/*
+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
+ * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or
+ * between themselves, they cooperatively multitask. An idle rq scores as
+ * prio PRIO_LIMIT so it is always preempted.
+ */
+static inline bool
+can_preempt(struct task_struct *p, int prio, u64 deadline)
+{
+ /* Better static priority RT task or better policy preemption */
+ if (p->prio < prio)
+ return true;
+ if (p->prio > prio)
+ return false;
+ if (p->policy == SCHED_BATCH)
+ return false;
+ /* SCHED_NORMAL and ISO will preempt based on deadline */
+ if (!deadline_before(p->deadline, deadline))
+ return false;
+ return true;
+}
+
+#ifdef CONFIG_SMP
+
+static inline bool is_per_cpu_kthread(struct task_struct *p)
+{
+ if (!(p->flags & PF_KTHREAD))
+ return false;
+
+ if (p->nr_cpus_allowed != 1)
+ return false;
+
+ return true;
+}
+
+/*
+ * Per-CPU kthreads are allowed to run on !active && online CPUs, see
+ * __set_cpus_allowed_ptr().
+ */
+static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
+{
+ if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
+ return false;
+
+ if (is_per_cpu_kthread(p))
+ return cpu_online(cpu);
+
+ return cpu_active(cpu);
+}
+
+/*
+ * Check to see if p can run on cpu, and if not, whether there are any online
+ * CPUs it can run on instead. This only happens with the hotplug threads that
+ * bring up the CPUs.
+ */
+static inline bool sched_other_cpu(struct task_struct *p, int cpu)
+{
+ if (likely(cpumask_test_cpu(cpu, &p->cpus_allowed)))
+ return false;
+ if (p->nr_cpus_allowed == 1) {
+ cpumask_t valid_mask;
+
+ cpumask_and(&valid_mask, &p->cpus_allowed, cpu_online_mask);
+ if (unlikely(cpumask_empty(&valid_mask)))
+ return false;
+ }
+ return true;
+}
+
+static inline bool needs_other_cpu(struct task_struct *p, int cpu)
+{
+ if (cpumask_test_cpu(cpu, &p->cpus_allowed))
+ return false;
+ return true;
+}
+
+#define cpu_online_map (*(cpumask_t *)cpu_online_mask)
+
+static void try_preempt(struct task_struct *p, struct rq *this_rq)
+{
+ int i, this_entries = rq_load(this_rq);
+ cpumask_t tmp;
+
+ if (suitable_idle_cpus(p) && resched_best_idle(p, task_cpu(p)))
+ return;
+
+ /* IDLEPRIO tasks never preempt anything but idle */
+ if (p->policy == SCHED_IDLEPRIO)
+ return;
+
+ cpumask_and(&tmp, &cpu_online_map, &p->cpus_allowed);
+
+ for (i = 0; i < num_possible_cpus(); i++) {
+ struct rq *rq = this_rq->cpu_order[i];
+
+ if (!cpumask_test_cpu(rq->cpu, &tmp))
+ continue;
+
+ if (!sched_interactive && rq != this_rq && rq_load(rq) <= this_entries)
+ continue;
+ if (smt_schedule(p, rq) && can_preempt(p, rq->rq_prio, rq->rq_deadline)) {
+ /* We set rq->preempting lockless, it's a hint only */
+ rq->preempting = p;
+ resched_curr(rq);
+ return;
+ }
+ }
+}
+
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check);
+#else /* CONFIG_SMP */
+static inline bool needs_other_cpu(struct task_struct *p, int cpu)
+{
+ return false;
+}
+
+static void try_preempt(struct task_struct *p, struct rq *this_rq)
+{
+ if (p->policy == SCHED_IDLEPRIO)
+ return;
+ if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline))
+ resched_curr(uprq);
+}
+
+static inline int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
+{
+ return set_cpus_allowed_ptr(p, new_mask);
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * wake flags
+ */
+#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
+#define WF_FORK 0x02 /* child wakeup after fork */
+#define WF_MIGRATED 0x04 /* internal use, task got migrated */
+
+static void
+ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
+{
+ struct rq *rq;
+
+ if (!schedstat_enabled())
+ return;
+
+ rq = this_rq();
+
+#ifdef CONFIG_SMP
+ if (cpu == rq->cpu) {
+ __schedstat_inc(rq->ttwu_local);
+ } else {
+ struct sched_domain *sd;
+
+ rcu_read_lock();
+ for_each_domain(rq->cpu, sd) {
+ if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
+ __schedstat_inc(sd->ttwu_wake_remote);
+ break;
+ }
+ }
+ rcu_read_unlock();
+ }
+
+#endif /* CONFIG_SMP */
+
+ __schedstat_inc(rq->ttwu_count);
+}
+
+static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
+{
+ activate_task(p, rq, en_flags);
+
+ /* if a worker is waking up, notify the workqueue */
+ if (p->flags & PF_WQ_WORKER)
+ wq_worker_waking_up(p, cpu_of(rq));
+}
+
+/*
+ * Mark the task runnable and perform wakeup-preemption.
+ */
+static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+ /*
+ * Sync wakeups (i.e. those types of wakeups where the waker
+ * has indicated that it will leave the CPU in short order)
+ * don't trigger a preemption if there are no idle cpus,
+ * instead waiting for current to deschedule.
+ */
+ if (wake_flags & WF_SYNC)
+ resched_suitable_idle(p);
+ else
+ try_preempt(p, rq);
+ p->state = TASK_RUNNING;
+ trace_sched_wakeup(p);
+}
+
+static void
+ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
+{
+ int en_flags = ENQUEUE_WAKEUP;
+
+ lockdep_assert_held(rq->lock);
+
+#ifdef CONFIG_SMP
+ if (p->sched_contributes_to_load)
+ rq->nr_uninterruptible--;
+
+ if (wake_flags & WF_MIGRATED)
+ en_flags |= ENQUEUE_MIGRATED;
+#endif
+
+ ttwu_activate(rq, p, en_flags);
+ ttwu_do_wakeup(rq, p, wake_flags);
+}
+
+/*
+ * Called in case the task @p isn't fully descheduled from its runqueue,
+ * in this case we must do a remote wakeup. Its a 'light' wakeup though,
+ * since all we need to do is flip p->state to TASK_RUNNING, since
+ * the task is still ->on_rq.
+ */
+static int ttwu_remote(struct task_struct *p, int wake_flags)
+{
+ struct rq *rq;
+ int ret = 0;
+
+ rq = __task_rq_lock(p, NULL);
+ if (likely(task_on_rq_queued(p))) {
+ ttwu_do_wakeup(rq, p, wake_flags);
+ ret = 1;
+ }
+ __task_rq_unlock(rq, NULL);
+
+ return ret;
+}
+
+#ifdef CONFIG_SMP
+void sched_ttwu_pending(void)
+{
+ struct rq *rq = this_rq();
+ struct llist_node *llist = llist_del_all(&rq->wake_list);
+ struct task_struct *p, *t;
+ struct rq_flags rf;
+
+ if (!llist)
+ return;
+
+ rq_lock_irqsave(rq, &rf);
+
+ llist_for_each_entry_safe(p, t, llist, wake_entry)
+ ttwu_do_activate(rq, p, 0);
+
+ rq_unlock_irqrestore(rq, &rf);
+}
+
+void scheduler_ipi(void)
+{
+ /*
+ * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
+ * TIF_NEED_RESCHED remotely (for the first time) will also send
+ * this IPI.
+ */
+ preempt_fold_need_resched();
+
+ if (llist_empty(&this_rq()->wake_list) && (!idle_cpu(smp_processor_id()) || need_resched()))
+ return;
+
+ /*
+ * Not all reschedule IPI handlers call irq_enter/irq_exit, since
+ * traditionally all their work was done from the interrupt return
+ * path. Now that we actually do some work, we need to make sure
+ * we do call them.
+ *
+ * Some archs already do call them, luckily irq_enter/exit nest
+ * properly.
+ *
+ * Arguably we should visit all archs and update all handlers,
+ * however a fair share of IPIs are still resched only so this would
+ * somewhat pessimize the simple resched case.
+ */
+ irq_enter();
+ sched_ttwu_pending();
+ irq_exit();
+}
+
+static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+ if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
+ if (!set_nr_if_polling(rq->idle))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+ }
+}
+
+void wake_up_if_idle(int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
+
+ rcu_read_lock();
+
+ if (!is_idle_task(rcu_dereference(rq->curr)))
+ goto out;
+
+ if (set_nr_if_polling(rq->idle)) {
+ trace_sched_wake_idle_without_ipi(cpu);
+ } else {
+ rq_lock_irqsave(rq, &rf);
+ if (likely(is_idle_task(rq->curr)))
+ smp_sched_reschedule(cpu);
+ /* Else cpu is not in idle, do nothing here */
+ rq_unlock_irqrestore(rq, &rf);
+ }
+
+out:
+ rcu_read_unlock();
+}
+
+static int valid_task_cpu(struct task_struct *p)
+{
+ cpumask_t valid_mask;
+
+ if (p->flags & PF_KTHREAD)
+ cpumask_and(&valid_mask, &p->cpus_allowed, cpu_all_mask);
+ else
+ cpumask_and(&valid_mask, &p->cpus_allowed, cpu_active_mask);
+
+ if (unlikely(!cpumask_weight(&valid_mask))) {
+ /* We shouldn't be hitting this any more */
+ printk(KERN_WARNING "SCHED: No cpumask for %s/%d weight %d\n", p->comm,
+ p->pid, cpumask_weight(&p->cpus_allowed));
+ return cpumask_any(&p->cpus_allowed);
+ }
+ return cpumask_any(&valid_mask);
+}
+
+/*
+ * For a task that's just being woken up we have a valuable balancing
+ * opportunity so choose the nearest cache most lightly loaded runqueue.
+ * Entered with rq locked and returns with the chosen runqueue locked.
+ */
+static inline int select_best_cpu(struct task_struct *p)
+{
+ unsigned int idlest = ~0U;
+ struct rq *rq = NULL;
+ int i;
+
+ if (suitable_idle_cpus(p)) {
+ int cpu = task_cpu(p);
+
+ if (unlikely(needs_other_cpu(p, cpu)))
+ cpu = valid_task_cpu(p);
+ rq = resched_best_idle(p, cpu);
+ if (likely(rq))
+ return rq->cpu;
+ }
+
+ for (i = 0; i < num_possible_cpus(); i++) {
+ struct rq *other_rq = task_rq(p)->cpu_order[i];
+ int entries;
+
+ if (!other_rq->online)
+ continue;
+ if (needs_other_cpu(p, other_rq->cpu))
+ continue;
+ entries = rq_load(other_rq);
+ if (entries >= idlest)
+ continue;
+ idlest = entries;
+ rq = other_rq;
+ }
+ if (unlikely(!rq))
+ return task_cpu(p);
+ return rq->cpu;
+}
+#else /* CONFIG_SMP */
+static int valid_task_cpu(struct task_struct *p)
+{
+ return 0;
+}
+
+static inline int select_best_cpu(struct task_struct *p)
+{
+ return 0;
+}
+
+static struct rq *resched_best_idle(struct task_struct *p, int cpu)
+{
+ return NULL;
+}
+#endif /* CONFIG_SMP */
+
+static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
+{
+ struct rq *rq = cpu_rq(cpu);
+
+#if defined(CONFIG_SMP)
+ if (!cpus_share_cache(smp_processor_id(), cpu)) {
+ sched_clock_cpu(cpu); /* Sync clocks across CPUs */
+ ttwu_queue_remote(p, cpu, wake_flags);
+ return;
+ }
+#endif
+ rq_lock(rq);
+ ttwu_do_activate(rq, p, wake_flags);
+ rq_unlock(rq);
+}
+
+/***
+ * try_to_wake_up - wake up a thread
+ * @p: the thread to be awakened
+ * @state: the mask of task states that can be woken
+ * @wake_flags: wake modifier flags (WF_*)
+ *
+ * Put it on the run-queue if it's not already there. The "current"
+ * thread is always on the run-queue (except when the actual
+ * re-schedule is in progress), and as such you're allowed to do
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
+ * runnable without the overhead of this.
+ *
+ * Return: %true if @p was woken up, %false if it was already running.
+ * or @state didn't match @p's state.
+ */
+static int
+try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
+{
+ unsigned long flags;
+ int cpu, success = 0;
+
+ /*
+ * If we are going to wake up a thread waiting for CONDITION we
+ * need to ensure that CONDITION=1 done by the caller can not be
+ * reordered with p->state check below. This pairs with mb() in
+ * set_current_state() the waiting thread does.
+ */
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ smp_mb__after_spinlock();
+ /* state is a volatile long, どうして、分からない */
+ if (!((unsigned int)p->state & state))
+ goto out;
+
+ trace_sched_waking(p);
+
+ /* We're going to change ->state: */
+ success = 1;
+ cpu = task_cpu(p);
+
+ /*
+ * Ensure we load p->on_rq _after_ p->state, otherwise it would
+ * be possible to, falsely, observe p->on_rq == 0 and get stuck
+ * in smp_cond_load_acquire() below.
+ *
+ * sched_ttwu_pending() try_to_wake_up()
+ * STORE p->on_rq = 1 LOAD p->state
+ * UNLOCK rq->lock
+ *
+ * __schedule() (switch to task 'p')
+ * LOCK rq->lock smp_rmb();
+ * smp_mb__after_spinlock();
+ * UNLOCK rq->lock
+ *
+ * [task p]
+ * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
+ *
+ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
+ * __schedule(). See the comment for smp_mb__after_spinlock().
+ */
+ smp_rmb();
+ if (p->on_rq && ttwu_remote(p, wake_flags))
+ goto stat;
+
+#ifdef CONFIG_SMP
+ /*
+ * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
+ * possible to, falsely, observe p->on_cpu == 0.
+ *
+ * One must be running (->on_cpu == 1) in order to remove oneself
+ * from the runqueue.
+ *
+ * __schedule() (switch to task 'p') try_to_wake_up()
+ * STORE p->on_cpu = 1 LOAD p->on_rq
+ * UNLOCK rq->lock
+ *
+ * __schedule() (put 'p' to sleep)
+ * LOCK rq->lock smp_rmb();
+ * smp_mb__after_spinlock();
+ * STORE p->on_rq = 0 LOAD p->on_cpu
+ *
+ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
+ * __schedule(). See the comment for smp_mb__after_spinlock().
+ */
+ smp_rmb();
+
+ /*
+ * If the owning (remote) CPU is still in the middle of schedule() with
+ * this task as prev, wait until its done referencing the task.
+ *
+ * Pairs with the smp_store_release() in finish_task().
+ *
+ * This ensures that tasks getting woken will be fully ordered against
+ * their previous state and preserve Program Order.
+ */
+ smp_cond_load_acquire(&p->on_cpu, !VAL);
+
+ p->sched_contributes_to_load = !!task_contributes_to_load(p);
+ p->state = TASK_WAKING;
+
+ if (p->in_iowait) {
+ delayacct_blkio_end(p);
+ atomic_dec(&task_rq(p)->nr_iowait);
+ }
+
+ cpu = select_best_cpu(p);
+ if (task_cpu(p) != cpu) {
+ wake_flags |= WF_MIGRATED;
+ psi_ttwu_dequeue(p);
+ set_task_cpu(p, cpu);
+ }
+
+#else /* CONFIG_SMP */
+
+ if (p->in_iowait) {
+ delayacct_blkio_end(p);
+ atomic_dec(&task_rq(p)->nr_iowait);
+ }
+
+#endif /* CONFIG_SMP */
+
+ ttwu_queue(p, cpu, wake_flags);
+stat:
+ ttwu_stat(p, cpu, wake_flags);
+out:
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+ return success;
+}
+
+/**
+ * try_to_wake_up_local - try to wake up a local task with rq lock held
+ * @p: the thread to be awakened
+ *
+ * Put @p on the run-queue if it's not already there. The caller must
+ * ensure that rq is locked and, @p is not the current task.
+ * rq stays locked over invocation.
+ */
+static void try_to_wake_up_local(struct task_struct *p)
+{
+ struct rq *rq = task_rq(p);
+
+ if (WARN_ON_ONCE(rq != this_rq()) ||
+ WARN_ON_ONCE(p == current))
+ return;
+
+ lockdep_assert_held(rq->lock);
+
+ if (!raw_spin_trylock(&p->pi_lock)) {
+ /*
+ * This is OK, because current is on_cpu, which avoids it being
+ * picked for load-balance and preemption/IRQs are still
+ * disabled avoiding further scheduler activity on it and we've
+ * not yet picked a replacement task.
+ */
+ rq_unlock(rq);
+ raw_spin_lock(&p->pi_lock);
+ rq_lock(rq);
+ }
+
+ if (!(p->state & TASK_NORMAL))
+ goto out;
+
+ trace_sched_waking(p);
+
+ if (!task_on_rq_queued(p)) {
+ if (p->in_iowait) {
+ delayacct_blkio_end(p);
+ atomic_dec(&rq->nr_iowait);
+ }
+ ttwu_activate(rq, p, ENQUEUE_WAKEUP);
+ }
+
+ ttwu_do_wakeup(rq, p, 0);
+ ttwu_stat(p, smp_processor_id(), 0);
+out:
+ raw_spin_unlock(&p->pi_lock);
+}
+
+/**
+ * wake_up_process - Wake up a specific process
+ * @p: The process to be woken up.
+ *
+ * Attempt to wake up the nominated process and move it to the set of runnable
+ * processes.
+ *
+ * Return: 1 if the process was woken up, 0 if it was already running.
+ *
+ * This function executes a full memory barrier before accessing the task state.
+ */
+int wake_up_process(struct task_struct *p)
+{
+ return try_to_wake_up(p, TASK_NORMAL, 0);
+}
+EXPORT_SYMBOL(wake_up_process);
+
+int wake_up_state(struct task_struct *p, unsigned int state)
+{
+ return try_to_wake_up(p, state, 0);
+}
+
+static void time_slice_expired(struct task_struct *p, struct rq *rq);
+
+/*
+ * Perform scheduler related setup for a newly forked process p.
+ * p is forked by current.
+ */
+int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p)
+{
+ unsigned long flags;
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+ INIT_HLIST_HEAD(&p->preempt_notifiers);
+#endif
+
+#ifdef CONFIG_COMPACTION
+ p->capture_control = NULL;
+#endif
+
+ /*
+ * We mark the process as NEW here. This guarantees that
+ * nobody will actually run it, and a signal or other external
+ * event cannot wake it up and insert it on the runqueue either.
+ */
+ p->state = TASK_NEW;
+
+ /*
+ * The process state is set to the same value of the process executing
+ * do_fork() code. That is running. This guarantees that nobody will
+ * actually run it, and a signal or other external event cannot wake
+ * it up and insert it on the runqueue either.
+ */
+
+ /* Should be reset in fork.c but done here for ease of MuQSS patching */
+ p->on_cpu =
+ p->on_rq =
+ p->utime =
+ p->stime =
+ p->sched_time =
+ p->stime_ns =
+ p->utime_ns = 0;
+ skiplist_node_init(&p->node);
+
+ /*
+ * Revert to default priority/policy on fork if requested.
+ */
+ if (unlikely(p->sched_reset_on_fork)) {
+ if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
+ p->policy = SCHED_NORMAL;
+ p->normal_prio = normal_prio(p);
+ }
+
+ if (PRIO_TO_NICE(p->static_prio) < 0) {
+ p->static_prio = NICE_TO_PRIO(0);
+ p->normal_prio = p->static_prio;
+ }
+
+ /*
+ * We don't need the reset flag anymore after the fork. It has
+ * fulfilled its duty:
+ */
+ p->sched_reset_on_fork = 0;
+ }
+
+ /*
+ * Silence PROVE_RCU.
+ */
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ set_task_cpu(p, smp_processor_id());
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+#ifdef CONFIG_SCHED_INFO
+ if (unlikely(sched_info_on()))
+ memset(&p->sched_info, 0, sizeof(p->sched_info));
+#endif
+ init_task_preempt_count(p);
+
+ return 0;
+}
+
+#ifdef CONFIG_SCHEDSTATS
+
+DEFINE_STATIC_KEY_FALSE(sched_schedstats);
+static bool __initdata __sched_schedstats = false;
+
+static void set_schedstats(bool enabled)
+{
+ if (enabled)
+ static_branch_enable(&sched_schedstats);
+ else
+ static_branch_disable(&sched_schedstats);
+}
+
+void force_schedstat_enabled(void)
+{
+ if (!schedstat_enabled()) {
+ pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
+ static_branch_enable(&sched_schedstats);
+ }
+}
+
+static int __init setup_schedstats(char *str)
+{
+ int ret = 0;
+ if (!str)
+ goto out;
+
+ /*
+ * This code is called before jump labels have been set up, so we can't
+ * change the static branch directly just yet. Instead set a temporary
+ * variable so init_schedstats() can do it later.
+ */
+ if (!strcmp(str, "enable")) {
+ __sched_schedstats = true;
+ ret = 1;
+ } else if (!strcmp(str, "disable")) {
+ __sched_schedstats = false;
+ ret = 1;
+ }
+out:
+ if (!ret)
+ pr_warn("Unable to parse schedstats=\n");
+
+ return ret;
+}
+__setup("schedstats=", setup_schedstats);
+
+static void __init init_schedstats(void)
+{
+ set_schedstats(__sched_schedstats);
+}
+
+#ifdef CONFIG_PROC_SYSCTL
+int sysctl_schedstats(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct ctl_table t;
+ int err;
+ int state = static_branch_likely(&sched_schedstats);
+
+ if (write && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ t = *table;
+ t.data = &state;
+ err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
+ if (err < 0)
+ return err;
+ if (write)
+ set_schedstats(state);
+ return err;
+}
+#endif /* CONFIG_PROC_SYSCTL */
+#else /* !CONFIG_SCHEDSTATS */
+static inline void init_schedstats(void) {}
+#endif /* CONFIG_SCHEDSTATS */
+
+static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p);
+
+static void account_task_cpu(struct rq *rq, struct task_struct *p)
+{
+ update_clocks(rq);
+ /* This isn't really a context switch but accounting is the same */
+ update_cpu_clock_switch(rq, p);
+ p->last_ran = rq->niffies;
+}
+
+bool sched_smp_initialized __read_mostly;
+
+static inline int hrexpiry_enabled(struct rq *rq)
+{
+ if (unlikely(!cpu_active(cpu_of(rq)) || !sched_smp_initialized))
+ return 0;
+ return hrtimer_is_hres_active(&rq->hrexpiry_timer);
+}
+
+/*
+ * Use HR-timers to deliver accurate preemption points.
+ */
+static inline void hrexpiry_clear(struct rq *rq)
+{
+ if (!hrexpiry_enabled(rq))
+ return;
+ if (hrtimer_active(&rq->hrexpiry_timer))
+ hrtimer_cancel(&rq->hrexpiry_timer);
+}
+
+/*
+ * High-resolution time_slice expiry.
+ * Runs from hardirq context with interrupts disabled.
+ */
+static enum hrtimer_restart hrexpiry(struct hrtimer *timer)
+{
+ struct rq *rq = container_of(timer, struct rq, hrexpiry_timer);
+ struct task_struct *p;
+
+ /* This can happen during CPU hotplug / resume */
+ if (unlikely(cpu_of(rq) != smp_processor_id()))
+ goto out;
+
+ /*
+ * We're doing this without the runqueue lock but this should always
+ * be run on the local CPU. Time slice should run out in __schedule
+ * but we set it to zero here in case niffies is slightly less.
+ */
+ p = rq->curr;
+ p->time_slice = 0;
+ __set_tsk_resched(p);
+out:
+ return HRTIMER_NORESTART;
+}
+
+/*
+ * Called to set the hrexpiry timer state.
+ *
+ * called with irqs disabled from the local CPU only
+ */
+static void hrexpiry_start(struct rq *rq, u64 delay)
+{
+ if (!hrexpiry_enabled(rq))
+ return;
+
+ hrtimer_start(&rq->hrexpiry_timer, ns_to_ktime(delay),
+ HRTIMER_MODE_REL_PINNED);
+}
+
+static void init_rq_hrexpiry(struct rq *rq)
+{
+ hrtimer_init(&rq->hrexpiry_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ rq->hrexpiry_timer.function = hrexpiry;
+}
+
+static inline int rq_dither(struct rq *rq)
+{
+ if (!hrexpiry_enabled(rq))
+ return HALF_JIFFY_US;
+ return 0;
+}
+
+/*
+ * wake_up_new_task - wake up a newly created task for the first time.
+ *
+ * This function will do some initial scheduler statistics housekeeping
+ * that must be done for every newly created context, then puts the task
+ * on the runqueue and wakes it.
+ */
+void wake_up_new_task(struct task_struct *p)
+{
+ struct task_struct *parent, *rq_curr;
+ struct rq *rq, *new_rq;
+ unsigned long flags;
+
+ parent = p->parent;
+
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ p->state = TASK_RUNNING;
+ /* Task_rq can't change yet on a new task */
+ new_rq = rq = task_rq(p);
+ if (unlikely(needs_other_cpu(p, task_cpu(p)))) {
+ set_task_cpu(p, valid_task_cpu(p));
+ new_rq = task_rq(p);
+ }
+
+ double_rq_lock(rq, new_rq);
+ rq_curr = rq->curr;
+
+ /*
+ * Make sure we do not leak PI boosting priority to the child.
+ */
+ p->prio = rq_curr->normal_prio;
+
+ trace_sched_wakeup_new(p);
+
+ /*
+ * Share the timeslice between parent and child, thus the
+ * total amount of pending timeslices in the system doesn't change,
+ * resulting in more scheduling fairness. If it's negative, it won't
+ * matter since that's the same as being 0. rq->rq_deadline is only
+ * modified within schedule() so it is always equal to
+ * current->deadline.
+ */
+ account_task_cpu(rq, rq_curr);
+ p->last_ran = rq_curr->last_ran;
+ if (likely(rq_curr->policy != SCHED_FIFO)) {
+ rq_curr->time_slice /= 2;
+ if (rq_curr->time_slice < RESCHED_US) {
+ /*
+ * Forking task has run out of timeslice. Reschedule it and
+ * start its child with a new time slice and deadline. The
+ * child will end up running first because its deadline will
+ * be slightly earlier.
+ */
+ __set_tsk_resched(rq_curr);
+ time_slice_expired(p, new_rq);
+ if (suitable_idle_cpus(p))
+ resched_best_idle(p, task_cpu(p));
+ else if (unlikely(rq != new_rq))
+ try_preempt(p, new_rq);
+ } else {
+ p->time_slice = rq_curr->time_slice;
+ if (rq_curr == parent && rq == new_rq && !suitable_idle_cpus(p)) {
+ /*
+ * The VM isn't cloned, so we're in a good position to
+ * do child-runs-first in anticipation of an exec. This
+ * usually avoids a lot of COW overhead.
+ */
+ __set_tsk_resched(rq_curr);
+ } else {
+ /*
+ * Adjust the hrexpiry since rq_curr will keep
+ * running and its timeslice has been shortened.
+ */
+ hrexpiry_start(rq, US_TO_NS(rq_curr->time_slice));
+ try_preempt(p, new_rq);
+ }
+ }
+ } else {
+ time_slice_expired(p, new_rq);
+ try_preempt(p, new_rq);
+ }
+ activate_task(p, new_rq, 0);
+ double_rq_unlock(rq, new_rq);
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+}
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+
+static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
+
+void preempt_notifier_inc(void)
+{
+ static_branch_inc(&preempt_notifier_key);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_inc);
+
+void preempt_notifier_dec(void)
+{
+ static_branch_dec(&preempt_notifier_key);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_dec);
+
+/**
+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
+ * @notifier: notifier struct to register
+ */
+void preempt_notifier_register(struct preempt_notifier *notifier)
+{
+ if (!static_branch_unlikely(&preempt_notifier_key))
+ WARN(1, "registering preempt_notifier while notifiers disabled\n");
+
+ hlist_add_head(&notifier->link, &current->preempt_notifiers);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_register);
+
+/**
+ * preempt_notifier_unregister - no longer interested in preemption notifications
+ * @notifier: notifier struct to unregister
+ *
+ * This is *not* safe to call from within a preemption notifier.
+ */
+void preempt_notifier_unregister(struct preempt_notifier *notifier)
+{
+ hlist_del(&notifier->link);
+}
+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
+
+static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+ struct preempt_notifier *notifier;
+
+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
+}
+
+static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+ if (static_branch_unlikely(&preempt_notifier_key))
+ __fire_sched_in_preempt_notifiers(curr);
+}
+
+static void
+__fire_sched_out_preempt_notifiers(struct task_struct *curr,
+ struct task_struct *next)
+{
+ struct preempt_notifier *notifier;
+
+ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
+ notifier->ops->sched_out(notifier, next);
+}
+
+static __always_inline void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+ struct task_struct *next)
+{
+ if (static_branch_unlikely(&preempt_notifier_key))
+ __fire_sched_out_preempt_notifiers(curr, next);
+}
+
+#else /* !CONFIG_PREEMPT_NOTIFIERS */
+
+static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
+{
+}
+
+static inline void
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
+ struct task_struct *next)
+{
+}
+
+#endif /* CONFIG_PREEMPT_NOTIFIERS */
+
+static inline void prepare_task(struct task_struct *next)
+{
+ /*
+ * Claim the task as running, we do this before switching to it
+ * such that any running task will have this set.
+ */
+ next->on_cpu = 1;
+}
+
+static inline void finish_task(struct task_struct *prev)
+{
+#ifdef CONFIG_SMP
+ /*
+ * After ->on_cpu is cleared, the task can be moved to a different CPU.
+ * We must ensure this doesn't happen until the switch is completely
+ * finished.
+ *
+ * In particular, the load of prev->state in finish_task_switch() must
+ * happen before this.
+ *
+ * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
+ */
+ smp_store_release(&prev->on_cpu, 0);
+#endif
+}
+
+static inline void
+prepare_lock_switch(struct rq *rq, struct task_struct *next)
+{
+ /*
+ * Since the runqueue lock will be released by the next
+ * task (which is an invalid locking op but in the case
+ * of the scheduler it's an obvious special-case), so we
+ * do an early lockdep release here:
+ */
+ spin_release(&rq->lock->dep_map, 1, _THIS_IP_);
+#ifdef CONFIG_DEBUG_SPINLOCK
+ /* this is a valid case when another task releases the spinlock */
+ rq->lock->owner = next;
+#endif
+}
+
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
+{
+ /*
+ * If we are tracking spinlock dependencies then we have to
+ * fix up the runqueue lock - which gets 'carried over' from
+ * prev into current:
+ */
+ spin_acquire(&rq->lock->dep_map, 0, 0, _THIS_IP_);
+
+#ifdef CONFIG_SMP
+ /*
+ * If prev was marked as migrating to another CPU in return_task, drop
+ * the local runqueue lock but leave interrupts disabled and grab the
+ * remote lock we're migrating it to before enabling them.
+ */
+ if (unlikely(task_on_rq_migrating(prev))) {
+ sched_info_dequeued(rq, prev);
+ /*
+ * We move the ownership of prev to the new cpu now. ttwu can't
+ * activate prev to the wrong cpu since it has to grab this
+ * runqueue in ttwu_remote.
+ */
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+ prev->cpu = prev->wake_cpu;
+#else
+ task_thread_info(prev)->cpu = prev->wake_cpu;
+#endif
+ raw_spin_unlock(rq->lock);
+
+ raw_spin_lock(&prev->pi_lock);
+ rq = __task_rq_lock(prev, NULL);
+ /* Check that someone else hasn't already queued prev */
+ if (likely(!task_queued(prev))) {
+ enqueue_task(rq, prev, 0);
+ prev->on_rq = TASK_ON_RQ_QUEUED;
+ /* Wake up the CPU if it's not already running */
+ resched_if_idle(rq);
+ }
+ raw_spin_unlock(&prev->pi_lock);
+ }
+#endif
+ rq_unlock(rq);
+
+ do_pending_softirq(rq, current);
+
+ local_irq_enable();
+}
+
+#ifndef prepare_arch_switch
+# define prepare_arch_switch(next) do { } while (0)
+#endif
+#ifndef finish_arch_switch
+# define finish_arch_switch(prev) do { } while (0)
+#endif
+#ifndef finish_arch_post_lock_switch
+# define finish_arch_post_lock_switch() do { } while (0)
+#endif
+
+/**
+ * prepare_task_switch - prepare to switch tasks
+ * @rq: the runqueue preparing to switch
+ * @next: the task we are going to switch to.
+ *
+ * This is called with the rq lock held and interrupts off. It must
+ * be paired with a subsequent finish_task_switch after the context
+ * switch.
+ *
+ * prepare_task_switch sets up locking and calls architecture specific
+ * hooks.
+ */
+static inline void
+prepare_task_switch(struct rq *rq, struct task_struct *prev,
+ struct task_struct *next)
+{
+ kcov_prepare_switch(prev);
+ sched_info_switch(rq, prev, next);
+ perf_event_task_sched_out(prev, next);
+ rseq_preempt(prev);
+ fire_sched_out_preempt_notifiers(prev, next);
+ prepare_task(next);
+ prepare_arch_switch(next);
+}
+
+/**
+ * finish_task_switch - clean up after a task-switch
+ * @rq: runqueue associated with task-switch
+ * @prev: the thread we just switched away from.
+ *
+ * finish_task_switch must be called after the context switch, paired
+ * with a prepare_task_switch call before the context switch.
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
+ * and do any other architecture-specific cleanup actions.
+ *
+ * Note that we may have delayed dropping an mm in context_switch(). If
+ * so, we finish that here outside of the runqueue lock. (Doing it
+ * with the lock held can cause deadlocks; see schedule() for
+ * details.)
+ *
+ * The context switch have flipped the stack from under us and restored the
+ * local variables which were saved when this task called schedule() in the
+ * past. prev == current is still correct but we need to recalculate this_rq
+ * because prev may have moved to another CPU.
+ */
+static void finish_task_switch(struct task_struct *prev)
+ __releases(rq->lock)
+{
+ struct rq *rq = this_rq();
+ struct mm_struct *mm = rq->prev_mm;
+ long prev_state;
+
+ /*
+ * The previous task will have left us with a preempt_count of 2
+ * because it left us after:
+ *
+ * schedule()
+ * preempt_disable(); // 1
+ * __schedule()
+ * raw_spin_lock_irq(rq->lock) // 2
+ *
+ * Also, see FORK_PREEMPT_COUNT.
+ */
+ if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
+ "corrupted preempt_count: %s/%d/0x%x\n",
+ current->comm, current->pid, preempt_count()))
+ preempt_count_set(FORK_PREEMPT_COUNT);
+
+ rq->prev_mm = NULL;
+
+ /*
+ * A task struct has one reference for the use as "current".
+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
+ * schedule one last time. The schedule call will never return, and
+ * the scheduled task must drop that reference.
+ *
+ * We must observe prev->state before clearing prev->on_cpu (in
+ * finish_task), otherwise a concurrent wakeup can get prev
+ * running on another CPU and we could rave with its RUNNING -> DEAD
+ * transition, resulting in a double drop.
+ */
+ prev_state = prev->state;
+ vtime_task_switch(prev);
+ perf_event_task_sched_in(prev, current);
+ finish_task(prev);
+ finish_lock_switch(rq, prev);
+ finish_arch_post_lock_switch();
+ kcov_finish_switch(current);
+
+ fire_sched_in_preempt_notifiers(current);
+ /*
+ * When switching through a kernel thread, the loop in
+ * membarrier_{private,global}_expedited() may have observed that
+ * kernel thread and not issued an IPI. It is therefore possible to
+ * schedule between user->kernel->user threads without passing though
+ * switch_mm(). Membarrier requires a barrier after storing to
+ * rq->curr, before returning to userspace, so provide them here:
+ *
+ * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
+ * provided by mmdrop(),
+ * - a sync_core for SYNC_CORE.
+ */
+ if (mm) {
+ membarrier_mm_sync_core_before_usermode(mm);
+ mmdrop(mm);
+ }
+ if (unlikely(prev_state == TASK_DEAD)) {
+ /*
+ * Remove function-return probe instances associated with this
+ * task and put them back on the free list.
+ */
+ kprobe_flush_task(prev);
+
+ /* Task is done with its stack. */
+ put_task_stack(prev);
+
+ put_task_struct(prev);
+ }
+}
+
+/**
+ * schedule_tail - first thing a freshly forked thread must call.
+ * @prev: the thread we just switched away from.
+ */
+asmlinkage __visible void schedule_tail(struct task_struct *prev)
+{
+ /*
+ * New tasks start with FORK_PREEMPT_COUNT, see there and
+ * finish_task_switch() for details.
+ *
+ * finish_task_switch() will drop rq->lock() and lower preempt_count
+ * and the preempt_enable() will end up enabling preemption (on
+ * PREEMPT_COUNT kernels).
+ */
+
+ finish_task_switch(prev);
+ preempt_enable();
+
+ if (current->set_child_tid)
+ put_user(task_pid_vnr(current), current->set_child_tid);
+
+ calculate_sigpending();
+}
+
+/*
+ * context_switch - switch to the new MM and the new thread's register state.
+ */
+static __always_inline void
+context_switch(struct rq *rq, struct task_struct *prev,
+ struct task_struct *next)
+{
+ struct mm_struct *mm, *oldmm;
+
+ prepare_task_switch(rq, prev, next);
+
+ mm = next->mm;
+ oldmm = prev->active_mm;
+ /*
+ * For paravirt, this is coupled with an exit in switch_to to
+ * combine the page table reload and the switch backend into
+ * one hypercall.
+ */
+ arch_start_context_switch(prev);
+
+ /*
+ * If mm is non-NULL, we pass through switch_mm(). If mm is
+ * NULL, we will pass through mmdrop() in finish_task_switch().
+ * Both of these contain the full memory barrier required by
+ * membarrier after storing to rq->curr, before returning to
+ * user-space.
+ */
+ if (!mm) {
+ next->active_mm = oldmm;
+ mmgrab(oldmm);
+ enter_lazy_tlb(oldmm, next);
+ } else
+ switch_mm_irqs_off(oldmm, mm, next);
+
+ if (!prev->mm) {
+ prev->active_mm = NULL;
+ rq->prev_mm = oldmm;
+ }
+ prepare_lock_switch(rq, next);
+
+ /* Here we just switch the register state and the stack. */
+ switch_to(prev, next, prev);
+ barrier();
+
+ finish_task_switch(prev);
+}
+
+/*
+ * nr_running, nr_uninterruptible and nr_context_switches:
+ *
+ * externally visible scheduler statistics: current number of runnable
+ * threads, total number of context switches performed since bootup.
+ */
+unsigned long nr_running(void)
+{
+ unsigned long i, sum = 0;
+
+ for_each_online_cpu(i)
+ sum += cpu_rq(i)->nr_running;
+
+ return sum;
+}
+
+static unsigned long nr_uninterruptible(void)
+{
+ unsigned long i, sum = 0;
+
+ for_each_online_cpu(i)
+ sum += cpu_rq(i)->nr_uninterruptible;
+
+ return sum;
+}
+
+/*
+ * Check if only the current task is running on the CPU.
+ *
+ * Caution: this function does not check that the caller has disabled
+ * preemption, thus the result might have a time-of-check-to-time-of-use
+ * race. The caller is responsible to use it correctly, for example:
+ *
+ * - from a non-preemptible section (of course)
+ *
+ * - from a thread that is bound to a single CPU
+ *
+ * - in a loop with very short iterations (e.g. a polling loop)
+ */
+bool single_task_running(void)
+{
+ struct rq *rq = cpu_rq(smp_processor_id());
+
+ if (rq_load(rq) == 1)
+ return true;
+ else
+ return false;
+}
+EXPORT_SYMBOL(single_task_running);
+
+unsigned long long nr_context_switches(void)
+{
+ int i;
+ unsigned long long sum = 0;
+
+ for_each_possible_cpu(i)
+ sum += cpu_rq(i)->nr_switches;
+
+ return sum;
+}
+
+/*
+ * Consumers of these two interfaces, like for example the cpufreq menu
+ * governor are using nonsensical data. Boosting frequency for a CPU that has
+ * IO-wait which might not even end up running the task when it does become
+ * runnable.
+ */
+
+unsigned long nr_iowait_cpu(int cpu)
+{
+ return atomic_read(&cpu_rq(cpu)->nr_iowait);
+}
+
+/*
+ * IO-wait accounting, and how its mostly bollocks (on SMP).
+ *
+ * The idea behind IO-wait account is to account the idle time that we could
+ * have spend running if it were not for IO. That is, if we were to improve the
+ * storage performance, we'd have a proportional reduction in IO-wait time.
+ *
+ * This all works nicely on UP, where, when a task blocks on IO, we account
+ * idle time as IO-wait, because if the storage were faster, it could've been
+ * running and we'd not be idle.
+ *
+ * This has been extended to SMP, by doing the same for each CPU. This however
+ * is broken.
+ *
+ * Imagine for instance the case where two tasks block on one CPU, only the one
+ * CPU will have IO-wait accounted, while the other has regular idle. Even
+ * though, if the storage were faster, both could've ran at the same time,
+ * utilising both CPUs.
+ *
+ * This means, that when looking globally, the current IO-wait accounting on
+ * SMP is a lower bound, by reason of under accounting.
+ *
+ * Worse, since the numbers are provided per CPU, they are sometimes
+ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
+ * associated with any one particular CPU, it can wake to another CPU than it
+ * blocked on. This means the per CPU IO-wait number is meaningless.
+ *
+ * Task CPU affinities can make all that even more 'interesting'.
+ */
+
+unsigned long nr_iowait(void)
+{
+ unsigned long i, sum = 0;
+
+ for_each_possible_cpu(i)
+ sum += nr_iowait_cpu(i);
+
+ return sum;
+}
+
+unsigned long nr_active(void)
+{
+ return nr_running() + nr_uninterruptible();
+}
+
+/* Variables and functions for calc_load */
+static unsigned long calc_load_update;
+unsigned long avenrun[3];
+EXPORT_SYMBOL(avenrun);
+
+/**
+ * get_avenrun - get the load average array
+ * @loads: pointer to dest load array
+ * @offset: offset to add
+ * @shift: shift count to shift the result left
+ *
+ * These values are estimates at best, so no need for locking.
+ */
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+{
+ loads[0] = (avenrun[0] + offset) << shift;
+ loads[1] = (avenrun[1] + offset) << shift;
+ loads[2] = (avenrun[2] + offset) << shift;
+}
+
+/*
+ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
+ */
+void calc_global_load(unsigned long ticks)
+{
+ long active;
+
+ if (time_before(jiffies, READ_ONCE(calc_load_update)))
+ return;
+ active = nr_active() * FIXED_1;
+
+ avenrun[0] = calc_load(avenrun[0], EXP_1, active);
+ avenrun[1] = calc_load(avenrun[1], EXP_5, active);
+ avenrun[2] = calc_load(avenrun[2], EXP_15, active);
+
+ calc_load_update = jiffies + LOAD_FREQ;
+}
+
+/**
+ * fixed_power_int - compute: x^n, in O(log n) time
+ *
+ * @x: base of the power
+ * @frac_bits: fractional bits of @x
+ * @n: power to raise @x to.
+ *
+ * By exploiting the relation between the definition of the natural power
+ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
+ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
+ * (where: n_i \elem {0, 1}, the binary vector representing n),
+ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
+ * of course trivially computable in O(log_2 n), the length of our binary
+ * vector.
+ */
+static unsigned long
+fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
+{
+ unsigned long result = 1UL << frac_bits;
+
+ if (n) {
+ for (;;) {
+ if (n & 1) {
+ result *= x;
+ result += 1UL << (frac_bits - 1);
+ result >>= frac_bits;
+ }
+ n >>= 1;
+ if (!n)
+ break;
+ x *= x;
+ x += 1UL << (frac_bits - 1);
+ x >>= frac_bits;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * a1 = a0 * e + a * (1 - e)
+ *
+ * a2 = a1 * e + a * (1 - e)
+ * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
+ * = a0 * e^2 + a * (1 - e) * (1 + e)
+ *
+ * a3 = a2 * e + a * (1 - e)
+ * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
+ * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
+ *
+ * ...
+ *
+ * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
+ * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
+ * = a0 * e^n + a * (1 - e^n)
+ *
+ * [1] application of the geometric series:
+ *
+ * n 1 - x^(n+1)
+ * S_n := \Sum x^i = -------------
+ * i=0 1 - x
+ */
+unsigned long
+calc_load_n(unsigned long load, unsigned long exp,
+ unsigned long active, unsigned int n)
+{
+ return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
+}
+
+DEFINE_PER_CPU(struct kernel_stat, kstat);
+DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
+
+EXPORT_PER_CPU_SYMBOL(kstat);
+EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
+
+#ifdef CONFIG_PARAVIRT
+static inline u64 steal_ticks(u64 steal)
+{
+ if (unlikely(steal > NSEC_PER_SEC))
+ return div_u64(steal, TICK_NSEC);
+
+ return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
+}
+#endif
+
+#ifndef nsecs_to_cputime
+# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
+#endif
+
+/*
+ * On each tick, add the number of nanoseconds to the unbanked variables and
+ * once one tick's worth has accumulated, account it allowing for accurate
+ * sub-tick accounting and totals. Use the TICK_APPROX_NS to match the way we
+ * deduct nanoseconds.
+ */
+static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long ns)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+ unsigned long ticks;
+
+ if (atomic_read(&rq->nr_iowait) > 0) {
+ rq->iowait_ns += ns;
+ if (rq->iowait_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->iowait_ns);
+ cpustat[CPUTIME_IOWAIT] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->iowait_ns %= JIFFY_NS;
+ }
+ } else {
+ rq->idle_ns += ns;
+ if (rq->idle_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->idle_ns);
+ cpustat[CPUTIME_IDLE] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->idle_ns %= JIFFY_NS;
+ }
+ }
+ acct_update_integrals(idle);
+}
+
+static void pc_system_time(struct rq *rq, struct task_struct *p,
+ int hardirq_offset, unsigned long ns)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+ unsigned long ticks;
+
+ p->stime_ns += ns;
+ if (p->stime_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(p->stime_ns);
+ p->stime_ns %= JIFFY_NS;
+ p->stime += (__force u64)TICK_APPROX_NS * ticks;
+ account_group_system_time(p, TICK_APPROX_NS * ticks);
+ }
+ p->sched_time += ns;
+ account_group_exec_runtime(p, ns);
+
+ if (hardirq_count() - hardirq_offset) {
+ rq->irq_ns += ns;
+ if (rq->irq_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->irq_ns);
+ cpustat[CPUTIME_IRQ] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->irq_ns %= JIFFY_NS;
+ }
+ } else if (in_serving_softirq()) {
+ rq->softirq_ns += ns;
+ if (rq->softirq_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->softirq_ns);
+ cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->softirq_ns %= JIFFY_NS;
+ }
+ } else {
+ rq->system_ns += ns;
+ if (rq->system_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->system_ns);
+ cpustat[CPUTIME_SYSTEM] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->system_ns %= JIFFY_NS;
+ }
+ }
+ acct_update_integrals(p);
+}
+
+static void pc_user_time(struct rq *rq, struct task_struct *p, unsigned long ns)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+ unsigned long ticks;
+
+ p->utime_ns += ns;
+ if (p->utime_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(p->utime_ns);
+ p->utime_ns %= JIFFY_NS;
+ p->utime += (__force u64)TICK_APPROX_NS * ticks;
+ account_group_user_time(p, TICK_APPROX_NS * ticks);
+ }
+ p->sched_time += ns;
+ account_group_exec_runtime(p, ns);
+
+ if (this_cpu_ksoftirqd() == p) {
+ /*
+ * ksoftirqd time do not get accounted in cpu_softirq_time.
+ * So, we have to handle it separately here.
+ */
+ rq->softirq_ns += ns;
+ if (rq->softirq_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->softirq_ns);
+ cpustat[CPUTIME_SOFTIRQ] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->softirq_ns %= JIFFY_NS;
+ }
+ }
+
+ if (task_nice(p) > 0 || idleprio_task(p)) {
+ rq->nice_ns += ns;
+ if (rq->nice_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->nice_ns);
+ cpustat[CPUTIME_NICE] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->nice_ns %= JIFFY_NS;
+ }
+ } else {
+ rq->user_ns += ns;
+ if (rq->user_ns >= JIFFY_NS) {
+ ticks = NS_TO_JIFFIES(rq->user_ns);
+ cpustat[CPUTIME_USER] += (__force u64)TICK_APPROX_NS * ticks;
+ rq->user_ns %= JIFFY_NS;
+ }
+ }
+ acct_update_integrals(p);
+}
+
+/*
+ * This is called on clock ticks.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
+ * CPU scheduler quota accounting is also performed here in microseconds.
+ */
+static void update_cpu_clock_tick(struct rq *rq, struct task_struct *p)
+{
+ s64 account_ns = rq->niffies - p->last_ran;
+ struct task_struct *idle = rq->idle;
+
+ /* Accurate tick timekeeping */
+ if (user_mode(get_irq_regs()))
+ pc_user_time(rq, p, account_ns);
+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) {
+ pc_system_time(rq, p, HARDIRQ_OFFSET, account_ns);
+ } else
+ pc_idle_time(rq, idle, account_ns);
+
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
+ if (p->policy != SCHED_FIFO && p != idle)
+ p->time_slice -= NS_TO_US(account_ns);
+
+ p->last_ran = rq->niffies;
+}
+
+/*
+ * This is called on context switches.
+ * Bank in p->sched_time the ns elapsed since the last tick or switch.
+ * CPU scheduler quota accounting is also performed here in microseconds.
+ */
+static void update_cpu_clock_switch(struct rq *rq, struct task_struct *p)
+{
+ s64 account_ns = rq->niffies - p->last_ran;
+ struct task_struct *idle = rq->idle;
+
+ /* Accurate subtick timekeeping */
+ if (p != idle)
+ pc_user_time(rq, p, account_ns);
+ else
+ pc_idle_time(rq, idle, account_ns);
+
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
+ if (p->policy != SCHED_FIFO && p != idle)
+ p->time_slice -= NS_TO_US(account_ns);
+}
+
+/*
+ * Return any ns on the sched_clock that have not yet been accounted in
+ * @p in case that task is currently running.
+ *
+ * Called with task_rq_lock(p) held.
+ */
+static inline u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
+{
+ u64 ns = 0;
+
+ /*
+ * Must be ->curr _and_ ->on_rq. If dequeued, we would
+ * project cycles that may never be accounted to this
+ * thread, breaking clock_gettime().
+ */
+ if (p == rq->curr && task_on_rq_queued(p)) {
+ update_clocks(rq);
+ ns = rq->niffies - p->last_ran;
+ }
+
+ return ns;
+}
+
+/*
+ * Return accounted runtime for the task.
+ * Return separately the current's pending runtime that have not been
+ * accounted yet.
+ *
+ */
+unsigned long long task_sched_runtime(struct task_struct *p)
+{
+ struct rq_flags rf;
+ struct rq *rq;
+ u64 ns;
+
+#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
+ /*
+ * 64-bit doesn't need locks to atomically read a 64-bit value.
+ * So we have a optimisation chance when the task's delta_exec is 0.
+ * Reading ->on_cpu is racy, but this is ok.
+ *
+ * If we race with it leaving CPU, we'll take a lock. So we're correct.
+ * If we race with it entering CPU, unaccounted time is 0. This is
+ * indistinguishable from the read occurring a few cycles earlier.
+ * If we see ->on_cpu without ->on_rq, the task is leaving, and has
+ * been accounted, so we're correct here as well.
+ */
+ if (!p->on_cpu || !task_on_rq_queued(p))
+ return tsk_seruntime(p);
+#endif
+
+ rq = task_rq_lock(p, &rf);
+ ns = p->sched_time + do_task_delta_exec(p, rq);
+ task_rq_unlock(rq, p, &rf);
+
+ return ns;
+}
+
+/*
+ * Functions to test for when SCHED_ISO tasks have used their allocated
+ * quota as real time scheduling and convert them back to SCHED_NORMAL. All
+ * data is modified only by the local runqueue during scheduler_tick with
+ * interrupts disabled.
+ */
+
+/*
+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
+ * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a
+ * slow division.
+ */
+static inline void iso_tick(struct rq *rq)
+{
+ rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
+ rq->iso_ticks += 100;
+ if (rq->iso_ticks > ISO_PERIOD * sched_iso_cpu) {
+ rq->iso_refractory = true;
+ if (unlikely(rq->iso_ticks > ISO_PERIOD * 100))
+ rq->iso_ticks = ISO_PERIOD * 100;
+ }
+}
+
+/* No SCHED_ISO task was running so decrease rq->iso_ticks */
+static inline void no_iso_tick(struct rq *rq, int ticks)
+{
+ if (rq->iso_ticks > 0 || rq->iso_refractory) {
+ rq->iso_ticks = rq->iso_ticks * (ISO_PERIOD - ticks) / ISO_PERIOD;
+ if (rq->iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) {
+ rq->iso_refractory = false;
+ if (unlikely(rq->iso_ticks < 0))
+ rq->iso_ticks = 0;
+ }
+ }
+}
+
+/* This manages tasks that have run out of timeslice during a scheduler_tick */
+static void task_running_tick(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ /*
+ * If a SCHED_ISO task is running we increment the iso_ticks. In
+ * order to prevent SCHED_ISO tasks from causing starvation in the
+ * presence of true RT tasks we account those as iso_ticks as well.
+ */
+ if (rt_task(p) || task_running_iso(p))
+ iso_tick(rq);
+ else
+ no_iso_tick(rq, 1);
+
+ /* SCHED_FIFO tasks never run out of timeslice. */
+ if (p->policy == SCHED_FIFO)
+ return;
+
+ if (iso_task(p)) {
+ if (task_running_iso(p)) {
+ if (rq->iso_refractory) {
+ /*
+ * SCHED_ISO task is running as RT and limit
+ * has been hit. Force it to reschedule as
+ * SCHED_NORMAL by zeroing its time_slice
+ */
+ p->time_slice = 0;
+ }
+ } else if (!rq->iso_refractory) {
+ /* Can now run again ISO. Reschedule to pick up prio */
+ goto out_resched;
+ }
+ }
+
+ /*
+ * Tasks that were scheduled in the first half of a tick are not
+ * allowed to run into the 2nd half of the next tick if they will
+ * run out of time slice in the interim. Otherwise, if they have
+ * less than RESCHED_US μs of time slice left they will be rescheduled.
+ * Dither is used as a backup for when hrexpiry is disabled or high res
+ * timers not configured in.
+ */
+ if (p->time_slice - rq->dither >= RESCHED_US)
+ return;
+out_resched:
+ rq_lock(rq);
+ __set_tsk_resched(p);
+ rq_unlock(rq);
+}
+
+static inline void task_tick(struct rq *rq)
+{
+ if (!rq_idle(rq))
+ task_running_tick(rq);
+ else if (rq->last_jiffy > rq->last_scheduler_tick)
+ no_iso_tick(rq, rq->last_jiffy - rq->last_scheduler_tick);
+}
+
+#ifdef CONFIG_NO_HZ_FULL
+/*
+ * We can stop the timer tick any time highres timers are active since
+ * we rely entirely on highres timeouts for task expiry rescheduling.
+ */
+static void sched_stop_tick(struct rq *rq, int cpu)
+{
+ if (!hrexpiry_enabled(rq))
+ return;
+ if (!tick_nohz_full_enabled())
+ return;
+ if (!tick_nohz_full_cpu(cpu))
+ return;
+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+
+static inline void sched_start_tick(struct rq *rq, int cpu)
+{
+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+
+struct tick_work {
+ int cpu;
+ struct delayed_work work;
+};
+
+static struct tick_work __percpu *tick_work_cpu;
+
+static void sched_tick_remote(struct work_struct *work)
+{
+ struct delayed_work *dwork = to_delayed_work(work);
+ struct tick_work *twork = container_of(dwork, struct tick_work, work);
+ int cpu = twork->cpu;
+ struct rq *rq = cpu_rq(cpu);
+ struct task_struct *curr;
+ u64 delta;
+
+ /*
+ * Handle the tick only if it appears the remote CPU is running in full
+ * dynticks mode. The check is racy by nature, but missing a tick or
+ * having one too much is no big deal because the scheduler tick updates
+ * statistics and checks timeslices in a time-independent way, regardless
+ * of when exactly it is running.
+ */
+ if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
+ goto out_requeue;
+
+ rq_lock_irq(rq);
+ curr = rq->curr;
+ if (is_idle_task(curr))
+ goto out_unlock;
+
+ update_rq_clock(rq);
+ delta = rq_clock_task(rq) - curr->last_ran;
+
+ /*
+ * Make sure the next tick runs within a reasonable
+ * amount of time.
+ */
+ WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
+ task_tick(rq);
+
+out_unlock:
+ rq_unlock_irq(rq, NULL);
+
+out_requeue:
+ /*
+ * Run the remote tick once per second (1Hz). This arbitrary
+ * frequency is large enough to avoid overload but short enough
+ * to keep scheduler internal stats reasonably up to date.
+ */
+ queue_delayed_work(system_unbound_wq, dwork, HZ);
+}
+
+static void sched_tick_start(int cpu)
+{
+ struct tick_work *twork;
+
+ if (housekeeping_cpu(cpu, HK_FLAG_TICK))
+ return;
+
+ WARN_ON_ONCE(!tick_work_cpu);
+
+ twork = per_cpu_ptr(tick_work_cpu, cpu);
+ twork->cpu = cpu;
+ INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
+ queue_delayed_work(system_unbound_wq, &twork->work, HZ);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static void sched_tick_stop(int cpu)
+{
+ struct tick_work *twork;
+
+ if (housekeeping_cpu(cpu, HK_FLAG_TICK))
+ return;
+
+ WARN_ON_ONCE(!tick_work_cpu);
+
+ twork = per_cpu_ptr(tick_work_cpu, cpu);
+ cancel_delayed_work_sync(&twork->work);
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+int __init sched_tick_offload_init(void)
+{
+ tick_work_cpu = alloc_percpu(struct tick_work);
+ BUG_ON(!tick_work_cpu);
+
+ return 0;
+}
+
+#else /* !CONFIG_NO_HZ_FULL */
+static inline void sched_stop_tick(struct rq *rq, int cpu) {}
+static inline void sched_start_tick(struct rq *rq, int cpu) {}
+static inline void sched_tick_start(int cpu) { }
+static inline void sched_tick_stop(int cpu) { }
+#endif
+
+/*
+ * This function gets called by the timer code, with HZ frequency.
+ * We call it with interrupts disabled.
+ */
+void scheduler_tick(void)
+{
+ int cpu __maybe_unused = smp_processor_id();
+ struct rq *rq = cpu_rq(cpu);
+
+ sched_clock_tick();
+ update_clocks(rq);
+ update_load_avg(rq, 0);
+ update_cpu_clock_tick(rq, rq->curr);
+ task_tick(rq);
+ rq->last_scheduler_tick = rq->last_jiffy;
+ rq->last_tick = rq->clock;
+ psi_task_tick(rq);
+ perf_event_task_tick();
+ sched_stop_tick(rq, cpu);
+}
+
+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
+ defined(CONFIG_TRACE_PREEMPT_TOGGLE))
+/*
+ * If the value passed in is equal to the current preempt count
+ * then we just disabled preemption. Start timing the latency.
+ */
+static inline void preempt_latency_start(int val)
+{
+ if (preempt_count() == val) {
+ unsigned long ip = get_lock_parent_ip();
+#ifdef CONFIG_DEBUG_PREEMPT
+ current->preempt_disable_ip = ip;
+#endif
+ trace_preempt_off(CALLER_ADDR0, ip);
+ }
+}
+
+void preempt_count_add(int val)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Underflow?
+ */
+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
+ return;
+#endif
+ __preempt_count_add(val);
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Spinlock count overflowing soon?
+ */
+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
+ PREEMPT_MASK - 10);
+#endif
+ preempt_latency_start(val);
+}
+EXPORT_SYMBOL(preempt_count_add);
+NOKPROBE_SYMBOL(preempt_count_add);
+
+/*
+ * If the value passed in equals to the current preempt count
+ * then we just enabled preemption. Stop timing the latency.
+ */
+static inline void preempt_latency_stop(int val)
+{
+ if (preempt_count() == val)
+ trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
+}
+
+void preempt_count_sub(int val)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Underflow?
+ */
+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
+ return;
+ /*
+ * Is the spinlock portion underflowing?
+ */
+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
+ !(preempt_count() & PREEMPT_MASK)))
+ return;
+#endif
+
+ preempt_latency_stop(val);
+ __preempt_count_sub(val);
+}
+EXPORT_SYMBOL(preempt_count_sub);
+NOKPROBE_SYMBOL(preempt_count_sub);
+
+#else
+static inline void preempt_latency_start(int val) { }
+static inline void preempt_latency_stop(int val) { }
+#endif
+
+static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
+{
+#ifdef CONFIG_DEBUG_PREEMPT
+ return p->preempt_disable_ip;
+#else
+ return 0;
+#endif
+}
+
+/*
+ * The time_slice is only refilled when it is empty and that is when we set a
+ * new deadline. Make sure update_clocks has been called recently to update
+ * rq->niffies.
+ */
+static void time_slice_expired(struct task_struct *p, struct rq *rq)
+{
+ p->time_slice = timeslice();
+ p->deadline = rq->niffies + task_deadline_diff(p);
+#ifdef CONFIG_SMT_NICE
+ if (!p->mm)
+ p->smt_bias = 0;
+ else if (rt_task(p))
+ p->smt_bias = 1 << 30;
+ else if (task_running_iso(p))
+ p->smt_bias = 1 << 29;
+ else if (idleprio_task(p)) {
+ if (task_running_idle(p))
+ p->smt_bias = 0;
+ else
+ p->smt_bias = 1;
+ } else if (--p->smt_bias < 1)
+ p->smt_bias = MAX_PRIO - p->static_prio;
+#endif
+}
+
+/*
+ * Timeslices below RESCHED_US are considered as good as expired as there's no
+ * point rescheduling when there's so little time left. SCHED_BATCH tasks
+ * have been flagged be not latency sensitive and likely to be fully CPU
+ * bound so every time they're rescheduled they have their time_slice
+ * refilled, but get a new later deadline to have little effect on
+ * SCHED_NORMAL tasks.
+
+ */
+static inline void check_deadline(struct task_struct *p, struct rq *rq)
+{
+ if (p->time_slice < RESCHED_US || batch_task(p))
+ time_slice_expired(p, rq);
+}
+
+/*
+ * Task selection with skiplists is a simple matter of picking off the first
+ * task in the sorted list, an O(1) operation. The lookup is amortised O(1)
+ * being bound to the number of processors.
+ *
+ * Runqueues are selectively locked based on their unlocked data and then
+ * unlocked if not needed. At most 3 locks will be held at any time and are
+ * released as soon as they're no longer needed. All balancing between CPUs
+ * is thus done here in an extremely simple first come best fit manner.
+ *
+ * This iterates over runqueues in cache locality order. In interactive mode
+ * it iterates over all CPUs and finds the task with the best key/deadline.
+ * In non-interactive mode it will only take a task if it's from the current
+ * runqueue or a runqueue with more tasks than the current one with a better
+ * key/deadline.
+ */
+#ifdef CONFIG_SMP
+static inline struct task_struct
+*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
+{
+ struct rq *locked = NULL, *chosen = NULL;
+ struct task_struct *edt = idle;
+ int i, best_entries = 0;
+ u64 best_key = ~0ULL;
+
+ for (i = 0; i < total_runqueues; i++) {
+ struct rq *other_rq = rq_order(rq, i);
+ skiplist_node *next;
+ int entries;
+
+ entries = other_rq->sl->entries;
+ /*
+ * Check for queued entres lockless first. The local runqueue
+ * is locked so entries will always be accurate.
+ */
+ if (!sched_interactive) {
+ /*
+ * Don't reschedule balance across nodes unless the CPU
+ * is idle.
+ */
+ if (edt != idle && rq->cpu_locality[other_rq->cpu] > 3)
+ break;
+ if (entries <= best_entries)
+ continue;
+ } else if (!entries)
+ continue;
+
+ /* if (i) implies other_rq != rq */
+ if (i) {
+ /* Check for best id queued lockless first */
+ if (other_rq->best_key >= best_key)
+ continue;
+
+ if (unlikely(!trylock_rq(rq, other_rq)))
+ continue;
+
+ /* Need to reevaluate entries after locking */
+ entries = other_rq->sl->entries;
+ if (unlikely(!entries)) {
+ unlock_rq(other_rq);
+ continue;
+ }
+ }
+
+ next = other_rq->node;
+ /*
+ * In interactive mode we check beyond the best entry on other
+ * runqueues if we can't get the best for smt or affinity
+ * reasons.
+ */
+ while ((next = next->next[0]) != other_rq->node) {
+ struct task_struct *p;
+ u64 key = next->key;
+
+ /* Reevaluate key after locking */
+ if (key >= best_key)
+ break;
+
+ p = next->value;
+ if (!smt_schedule(p, rq)) {
+ if (i && !sched_interactive)
+ break;
+ continue;
+ }
+
+ if (sched_other_cpu(p, cpu)) {
+ if (sched_interactive || !i)
+ continue;
+ break;
+ }
+ /* Make sure affinity is ok */
+ if (i) {
+ /* From this point on p is the best so far */
+ if (locked)
+ unlock_rq(locked);
+ chosen = locked = other_rq;
+ }
+ best_entries = entries;
+ best_key = key;
+ edt = p;
+ break;
+ }
+ /* rq->preempting is a hint only as the state may have changed
+ * since it was set with the resched call but if we have met
+ * the condition we can break out here. */
+ if (edt == rq->preempting)
+ break;
+ if (i && other_rq != chosen)
+ unlock_rq(other_rq);
+ }
+
+ if (likely(edt != idle))
+ take_task(rq, cpu, edt);
+
+ if (locked)
+ unlock_rq(locked);
+
+ rq->preempting = NULL;
+
+ return edt;
+}
+#else /* CONFIG_SMP */
+static inline struct task_struct
+*earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle)
+{
+ struct task_struct *edt;
+
+ if (unlikely(!rq->sl->entries))
+ return idle;
+ edt = rq->node->next[0]->value;
+ take_task(rq, cpu, edt);
+ return edt;
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Print scheduling while atomic bug:
+ */
+static noinline void __schedule_bug(struct task_struct *prev)
+{
+ /* Save this before calling printk(), since that will clobber it */
+ unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
+
+ if (oops_in_progress)
+ return;
+
+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
+ prev->comm, prev->pid, preempt_count());
+
+ debug_show_held_locks(prev);
+ print_modules();
+ if (irqs_disabled())
+ print_irqtrace_events(prev);
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
+ && in_atomic_preempt_off()) {
+ pr_err("Preemption disabled at:");
+ print_ip_sym(preempt_disable_ip);
+ pr_cont("\n");
+ }
+ dump_stack();
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
+}
+
+/*
+ * Various schedule()-time debugging checks and statistics:
+ */
+static inline void schedule_debug(struct task_struct *prev)
+{
+#ifdef CONFIG_SCHED_STACK_END_CHECK
+ if (task_stack_end_corrupted(prev))
+ panic("corrupted stack end detected inside scheduler\n");
+#endif
+
+ if (unlikely(in_atomic_preempt_off())) {
+ __schedule_bug(prev);
+ preempt_count_set(PREEMPT_DISABLED);
+ }
+ rcu_sleep_check();
+
+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+
+ schedstat_inc(this_rq()->sched_count);
+}
+
+/*
+ * The currently running task's information is all stored in rq local data
+ * which is only modified by the local CPU.
+ */
+static inline void set_rq_task(struct rq *rq, struct task_struct *p)
+{
+ if (p == rq->idle || p->policy == SCHED_FIFO)
+ hrexpiry_clear(rq);
+ else
+ hrexpiry_start(rq, US_TO_NS(p->time_slice));
+ if (rq->clock - rq->last_tick > HALF_JIFFY_NS)
+ rq->dither = 0;
+ else
+ rq->dither = rq_dither(rq);
+
+ rq->rq_deadline = p->deadline;
+ rq->rq_prio = p->prio;
+#ifdef CONFIG_SMT_NICE
+ rq->rq_mm = p->mm;
+ rq->rq_smt_bias = p->smt_bias;
+#endif
+}
+
+#ifdef CONFIG_SMT_NICE
+static void check_no_siblings(struct rq __maybe_unused *this_rq) {}
+static void wake_no_siblings(struct rq __maybe_unused *this_rq) {}
+static void (*check_siblings)(struct rq *this_rq) = &check_no_siblings;
+static void (*wake_siblings)(struct rq *this_rq) = &wake_no_siblings;
+
+/* Iterate over smt siblings when we've scheduled a process on cpu and decide
+ * whether they should continue running or be descheduled. */
+static void check_smt_siblings(struct rq *this_rq)
+{
+ int other_cpu;
+
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
+ struct task_struct *p;
+ struct rq *rq;
+
+ rq = cpu_rq(other_cpu);
+ if (rq_idle(rq))
+ continue;
+ p = rq->curr;
+ if (!smt_schedule(p, this_rq))
+ resched_curr(rq);
+ }
+}
+
+static void wake_smt_siblings(struct rq *this_rq)
+{
+ int other_cpu;
+
+ for_each_cpu(other_cpu, &this_rq->thread_mask) {
+ struct rq *rq;
+
+ rq = cpu_rq(other_cpu);
+ if (rq_idle(rq))
+ resched_idle(rq);
+ }
+}
+#else
+static void check_siblings(struct rq __maybe_unused *this_rq) {}
+static void wake_siblings(struct rq __maybe_unused *this_rq) {}
+#endif
+
+/*
+ * schedule() is the main scheduler function.
+ *
+ * The main means of driving the scheduler and thus entering this function are:
+ *
+ * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
+ *
+ * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
+ * paths. For example, see arch/x86/entry_64.S.
+ *
+ * To drive preemption between tasks, the scheduler sets the flag in timer
+ * interrupt handler scheduler_tick().
+ *
+ * 3. Wakeups don't really cause entry into schedule(). They add a
+ * task to the run-queue and that's it.
+ *
+ * Now, if the new task added to the run-queue preempts the current
+ * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
+ * called on the nearest possible occasion:
+ *
+ * - If the kernel is preemptible (CONFIG_PREEMPT=y):
+ *
+ * - in syscall or exception context, at the next outmost
+ * preempt_enable(). (this might be as soon as the wake_up()'s
+ * spin_unlock()!)
+ *
+ * - in IRQ context, return from interrupt-handler to
+ * preemptible context
+ *
+ * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
+ * then at the next:
+ *
+ * - cond_resched() call
+ * - explicit schedule() call
+ * - return from syscall or exception to user-space
+ * - return from interrupt-handler to user-space
+ *
+ * WARNING: must be called with preemption disabled!
+ */
+static void __sched notrace __schedule(bool preempt)
+{
+ struct task_struct *prev, *next, *idle;
+ unsigned long *switch_count;
+ bool deactivate = false;
+ struct rq *rq;
+ u64 niffies;
+ int cpu;
+
+ cpu = smp_processor_id();
+ rq = cpu_rq(cpu);
+ prev = rq->curr;
+ idle = rq->idle;
+
+ schedule_debug(prev);
+
+ local_irq_disable();
+ rcu_note_context_switch(preempt);
+
+ /*
+ * Make sure that signal_pending_state()->signal_pending() below
+ * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
+ * done by the caller to avoid the race with signal_wake_up().
+ *
+ * The membarrier system call requires a full memory barrier
+ * after coming from user-space, before storing to rq->curr.
+ */
+ rq_lock(rq);
+ smp_mb__after_spinlock();
+#ifdef CONFIG_SMP
+ if (rq->preempt) {
+ /*
+ * Make sure resched_curr hasn't triggered a preemption
+ * locklessly on a task that has since scheduled away. Spurious
+ * wakeup of idle is okay though.
+ */
+ if (unlikely(preempt && prev != idle && !test_tsk_need_resched(prev))) {
+ rq->preempt = NULL;
+ clear_preempt_need_resched();
+ rq_unlock_irq(rq, NULL);
+ return;
+ }
+ rq->preempt = NULL;
+ }
+#endif
+
+ switch_count = &prev->nivcsw;
+ if (!preempt && prev->state) {
+ if (signal_pending_state(prev->state, prev)) {
+ prev->state = TASK_RUNNING;
+ } else {
+ deactivate = true;
+ prev->on_rq = 0;
+
+ if (prev->in_iowait) {
+ atomic_inc(&rq->nr_iowait);
+ delayacct_blkio_start();
+ }
+
+ /*
+ * If a worker is going to sleep, notify and
+ * ask workqueue whether it wants to wake up a
+ * task to maintain concurrency. If so, wake
+ * up the task.
+ */
+ if (prev->flags & PF_WQ_WORKER) {
+ struct task_struct *to_wakeup;
+
+ to_wakeup = wq_worker_sleeping(prev);
+ if (to_wakeup)
+ try_to_wake_up_local(to_wakeup);
+ }
+ }
+ switch_count = &prev->nvcsw;
+ }
+
+ /*
+ * Store the niffy value here for use by the next task's last_ran
+ * below to avoid losing niffies due to update_clocks being called
+ * again after this point.
+ */
+ update_clocks(rq);
+ niffies = rq->niffies;
+ update_cpu_clock_switch(rq, prev);
+
+ clear_tsk_need_resched(prev);
+ clear_preempt_need_resched();
+
+ if (idle != prev) {
+ check_deadline(prev, rq);
+ return_task(prev, rq, cpu, deactivate);
+ }
+
+ next = earliest_deadline_task(rq, cpu, idle);
+ if (likely(next->prio != PRIO_LIMIT))
+ clear_cpuidle_map(cpu);
+ else {
+ set_cpuidle_map(cpu);
+ update_load_avg(rq, 0);
+ }
+
+ set_rq_task(rq, next);
+ next->last_ran = niffies;
+
+ if (likely(prev != next)) {
+ /*
+ * Don't reschedule an idle task or deactivated tasks
+ */
+ if (prev == idle) {
+ rq->nr_running++;
+ if (rt_task(next))
+ rq->rt_nr_running++;
+ } else if (!deactivate)
+ resched_suitable_idle(prev);
+ if (unlikely(next == idle)) {
+ rq->nr_running--;
+ if (rt_task(prev))
+ rq->rt_nr_running--;
+ wake_siblings(rq);
+ } else
+ check_siblings(rq);
+ rq->nr_switches++;
+ rq->curr = next;
+ /*
+ * The membarrier system call requires each architecture
+ * to have a full memory barrier after updating
+ * rq->curr, before returning to user-space.
+ *
+ * Here are the schemes providing that barrier on the
+ * various architectures:
+ * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
+ * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
+ * - finish_lock_switch() for weakly-ordered
+ * architectures where spin_unlock is a full barrier,
+ * - switch_to() for arm64 (weakly-ordered, spin_unlock
+ * is a RELEASE barrier),
+ */
+ ++*switch_count;
+
+ trace_sched_switch(preempt, prev, next);
+ context_switch(rq, prev, next); /* unlocks the rq */
+ } else {
+ check_siblings(rq);
+ rq_unlock(rq);
+ do_pending_softirq(rq, next);
+ local_irq_enable();
+ }
+}
+
+void __noreturn do_task_dead(void)
+{
+ /* Causes final put_task_struct in finish_task_switch(). */
+ set_special_state(TASK_DEAD);
+
+ /* Tell freezer to ignore us: */
+ current->flags |= PF_NOFREEZE;
+ __schedule(false);
+ BUG();
+
+ /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
+ for (;;)
+ cpu_relax();
+}
+
+static inline void sched_submit_work(struct task_struct *tsk)
+{
+ if (!tsk->state || tsk_is_pi_blocked(tsk) ||
+ preempt_count() ||
+ signal_pending_state(tsk->state, tsk))
+ return;
+
+ /*
+ * If we are going to sleep and we have plugged IO queued,
+ * make sure to submit it to avoid deadlocks.
+ */
+ if (blk_needs_flush_plug(tsk))
+ blk_schedule_flush_plug(tsk);
+}
+
+asmlinkage __visible void __sched schedule(void)
+{
+ struct task_struct *tsk = current;
+
+ sched_submit_work(tsk);
+ do {
+ preempt_disable();
+ __schedule(false);
+ sched_preempt_enable_no_resched();
+ } while (need_resched());
+}
+
+EXPORT_SYMBOL(schedule);
+
+/*
+ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
+ * state (have scheduled out non-voluntarily) by making sure that all
+ * tasks have either left the run queue or have gone into user space.
+ * As idle tasks do not do either, they must not ever be preempted
+ * (schedule out non-voluntarily).
+ *
+ * schedule_idle() is similar to schedule_preempt_disable() except that it
+ * never enables preemption because it does not call sched_submit_work().
+ */
+void __sched schedule_idle(void)
+{
+ /*
+ * As this skips calling sched_submit_work(), which the idle task does
+ * regardless because that function is a nop when the task is in a
+ * TASK_RUNNING state, make sure this isn't used someplace that the
+ * current task can be in any other state. Note, idle is always in the
+ * TASK_RUNNING state.
+ */
+ WARN_ON_ONCE(current->state);
+ do {
+ __schedule(false);
+ } while (need_resched());
+}
+
+#ifdef CONFIG_CONTEXT_TRACKING
+asmlinkage __visible void __sched schedule_user(void)
+{
+ /*
+ * If we come here after a random call to set_need_resched(),
+ * or we have been woken up remotely but the IPI has not yet arrived,
+ * we haven't yet exited the RCU idle mode. Do it here manually until
+ * we find a better solution.
+ *
+ * NB: There are buggy callers of this function. Ideally we
+ * should warn if prev_state != IN_USER, but that will trigger
+ * too frequently to make sense yet.
+ */
+ enum ctx_state prev_state = exception_enter();
+ schedule();
+ exception_exit(prev_state);
+}
+#endif
+
+/**
+ * schedule_preempt_disabled - called with preemption disabled
+ *
+ * Returns with preemption disabled. Note: preempt_count must be 1
+ */
+void __sched schedule_preempt_disabled(void)
+{
+ sched_preempt_enable_no_resched();
+ schedule();
+ preempt_disable();
+}
+
+static void __sched notrace preempt_schedule_common(void)
+{
+ do {
+ /*
+ * Because the function tracer can trace preempt_count_sub()
+ * and it also uses preempt_enable/disable_notrace(), if
+ * NEED_RESCHED is set, the preempt_enable_notrace() called
+ * by the function tracer will call this function again and
+ * cause infinite recursion.
+ *
+ * Preemption must be disabled here before the function
+ * tracer can trace. Break up preempt_disable() into two
+ * calls. One to disable preemption without fear of being
+ * traced. The other to still record the preemption latency,
+ * which can also be traced by the function tracer.
+ */
+ preempt_disable_notrace();
+ preempt_latency_start(1);
+ __schedule(true);
+ preempt_latency_stop(1);
+ preempt_enable_no_resched_notrace();
+
+ /*
+ * Check again in case we missed a preemption opportunity
+ * between schedule and now.
+ */
+ } while (need_resched());
+}
+
+#ifdef CONFIG_PREEMPT
+/*
+ * this is the entry point to schedule() from in-kernel preemption
+ * off of preempt_enable. Kernel preemptions off return from interrupt
+ * occur there and call schedule directly.
+ */
+asmlinkage __visible void __sched notrace preempt_schedule(void)
+{
+ /*
+ * If there is a non-zero preempt_count or interrupts are disabled,
+ * we do not want to preempt the current task. Just return..
+ */
+ if (likely(!preemptible()))
+ return;
+
+ preempt_schedule_common();
+}
+NOKPROBE_SYMBOL(preempt_schedule);
+EXPORT_SYMBOL(preempt_schedule);
+
+/**
+ * preempt_schedule_notrace - preempt_schedule called by tracing
+ *
+ * The tracing infrastructure uses preempt_enable_notrace to prevent
+ * recursion and tracing preempt enabling caused by the tracing
+ * infrastructure itself. But as tracing can happen in areas coming
+ * from userspace or just about to enter userspace, a preempt enable
+ * can occur before user_exit() is called. This will cause the scheduler
+ * to be called when the system is still in usermode.
+ *
+ * To prevent this, the preempt_enable_notrace will use this function
+ * instead of preempt_schedule() to exit user context if needed before
+ * calling the scheduler.
+ */
+asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
+{
+ enum ctx_state prev_ctx;
+
+ if (likely(!preemptible()))
+ return;
+
+ do {
+ /*
+ * Because the function tracer can trace preempt_count_sub()
+ * and it also uses preempt_enable/disable_notrace(), if
+ * NEED_RESCHED is set, the preempt_enable_notrace() called
+ * by the function tracer will call this function again and
+ * cause infinite recursion.
+ *
+ * Preemption must be disabled here before the function
+ * tracer can trace. Break up preempt_disable() into two
+ * calls. One to disable preemption without fear of being
+ * traced. The other to still record the preemption latency,
+ * which can also be traced by the function tracer.
+ */
+ preempt_disable_notrace();
+ preempt_latency_start(1);
+ /*
+ * Needs preempt disabled in case user_exit() is traced
+ * and the tracer calls preempt_enable_notrace() causing
+ * an infinite recursion.
+ */
+ prev_ctx = exception_enter();
+ __schedule(true);
+ exception_exit(prev_ctx);
+
+ preempt_latency_stop(1);
+ preempt_enable_no_resched_notrace();
+ } while (need_resched());
+}
+EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
+
+#endif /* CONFIG_PREEMPT */
+
+/*
+ * this is the entry point to schedule() from kernel preemption
+ * off of irq context.
+ * Note, that this is called and return with irqs disabled. This will
+ * protect us against recursive calling from irq.
+ */
+asmlinkage __visible void __sched preempt_schedule_irq(void)
+{
+ enum ctx_state prev_state;
+
+ /* Catch callers which need to be fixed */
+ BUG_ON(preempt_count() || !irqs_disabled());
+
+ prev_state = exception_enter();
+
+ do {
+ preempt_disable();
+ local_irq_enable();
+ __schedule(true);
+ local_irq_disable();
+ sched_preempt_enable_no_resched();
+ } while (need_resched());
+
+ exception_exit(prev_state);
+}
+
+int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
+ void *key)
+{
+ return try_to_wake_up(curr->private, mode, wake_flags);
+}
+EXPORT_SYMBOL(default_wake_function);
+
+#ifdef CONFIG_RT_MUTEXES
+
+static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
+{
+ if (pi_task)
+ prio = min(prio, pi_task->prio);
+
+ return prio;
+}
+
+static inline int rt_effective_prio(struct task_struct *p, int prio)
+{
+ struct task_struct *pi_task = rt_mutex_get_top_task(p);
+
+ return __rt_effective_prio(pi_task, prio);
+}
+
+/*
+ * rt_mutex_setprio - set the current priority of a task
+ * @p: task to boost
+ * @pi_task: donor task
+ *
+ * This function changes the 'effective' priority of a task. It does
+ * not touch ->normal_prio like __setscheduler().
+ *
+ * Used by the rt_mutex code to implement priority inheritance
+ * logic. Call site only calls if the priority of the task changed.
+ */
+void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
+{
+ int prio, oldprio;
+ struct rq *rq;
+
+ /* XXX used to be waiter->prio, not waiter->task->prio */
+ prio = __rt_effective_prio(pi_task, p->normal_prio);
+
+ /*
+ * If nothing changed; bail early.
+ */
+ if (p->pi_top_task == pi_task && prio == p->prio)
+ return;
+
+ rq = __task_rq_lock(p, NULL);
+ update_rq_clock(rq);
+ /*
+ * Set under pi_lock && rq->lock, such that the value can be used under
+ * either lock.
+ *
+ * Note that there is loads of tricky to make this pointer cache work
+ * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
+ * ensure a task is de-boosted (pi_task is set to NULL) before the
+ * task is allowed to run again (and can exit). This ensures the pointer
+ * points to a blocked task -- which guaratees the task is present.
+ */
+ p->pi_top_task = pi_task;
+
+ /*
+ * For FIFO/RR we only need to set prio, if that matches we're done.
+ */
+ if (prio == p->prio)
+ goto out_unlock;
+
+ /*
+ * Idle task boosting is a nono in general. There is one
+ * exception, when PREEMPT_RT and NOHZ is active:
+ *
+ * The idle task calls get_next_timer_interrupt() and holds
+ * the timer wheel base->lock on the CPU and another CPU wants
+ * to access the timer (probably to cancel it). We can safely
+ * ignore the boosting request, as the idle CPU runs this code
+ * with interrupts disabled and will complete the lock
+ * protected section without being interrupted. So there is no
+ * real need to boost.
+ */
+ if (unlikely(p == rq->idle)) {
+ WARN_ON(p != rq->curr);
+ WARN_ON(p->pi_blocked_on);
+ goto out_unlock;
+ }
+
+ trace_sched_pi_setprio(p, pi_task);
+ oldprio = p->prio;
+ p->prio = prio;
+ if (task_running(rq, p)){
+ if (prio > oldprio)
+ resched_task(p);
+ } else if (task_queued(p)) {
+ dequeue_task(rq, p, DEQUEUE_SAVE);
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ if (prio < oldprio)
+ try_preempt(p, rq);
+ }
+out_unlock:
+ __task_rq_unlock(rq, NULL);
+}
+#else
+static inline int rt_effective_prio(struct task_struct *p, int prio)
+{
+ return prio;
+}
+#endif
+
+/*
+ * Adjust the deadline for when the priority is to change, before it's
+ * changed.
+ */
+static inline void adjust_deadline(struct task_struct *p, int new_prio)
+{
+ p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p);
+}
+
+void set_user_nice(struct task_struct *p, long nice)
+{
+ int new_static, old_static;
+ struct rq_flags rf;
+ struct rq *rq;
+
+ if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
+ return;
+ new_static = NICE_TO_PRIO(nice);
+ /*
+ * We have to be careful, if called from sys_setpriority(),
+ * the task might be in the middle of scheduling on another CPU.
+ */
+ rq = task_rq_lock(p, &rf);
+ update_rq_clock(rq);
+
+ /*
+ * The RT priorities are set via sched_setscheduler(), but we still
+ * allow the 'normal' nice value to be set - but as expected
+ * it wont have any effect on scheduling until the task is
+ * not SCHED_NORMAL/SCHED_BATCH:
+ */
+ if (has_rt_policy(p)) {
+ p->static_prio = new_static;
+ goto out_unlock;
+ }
+
+ adjust_deadline(p, new_static);
+ old_static = p->static_prio;
+ p->static_prio = new_static;
+ p->prio = effective_prio(p);
+
+ if (task_queued(p)) {
+ dequeue_task(rq, p, DEQUEUE_SAVE);
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ if (new_static < old_static)
+ try_preempt(p, rq);
+ } else if (task_running(rq, p)) {
+ set_rq_task(rq, p);
+ if (old_static < new_static)
+ resched_task(p);
+ }
+out_unlock:
+ task_rq_unlock(rq, p, &rf);
+}
+EXPORT_SYMBOL(set_user_nice);
+
+/*
+ * can_nice - check if a task can reduce its nice value
+ * @p: task
+ * @nice: nice value
+ */
+int can_nice(const struct task_struct *p, const int nice)
+{
+ /* Convert nice value [19,-20] to rlimit style value [1,40] */
+ int nice_rlim = nice_to_rlimit(nice);
+
+ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
+ capable(CAP_SYS_NICE));
+}
+
+#ifdef __ARCH_WANT_SYS_NICE
+
+/*
+ * sys_nice - change the priority of the current process.
+ * @increment: priority increment
+ *
+ * sys_setpriority is a more generic, but much slower function that
+ * does similar things.
+ */
+SYSCALL_DEFINE1(nice, int, increment)
+{
+ long nice, retval;
+
+ /*
+ * Setpriority might change our priority at the same moment.
+ * We don't have to worry. Conceptually one call occurs first
+ * and we have a single winner.
+ */
+
+ increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
+ nice = task_nice(current) + increment;
+
+ nice = clamp_val(nice, MIN_NICE, MAX_NICE);
+ if (increment < 0 && !can_nice(current, nice))
+ return -EPERM;
+
+ retval = security_task_setnice(current, nice);
+ if (retval)
+ return retval;
+
+ set_user_nice(current, nice);
+ return 0;
+}
+
+#endif
+
+/**
+ * task_prio - return the priority value of a given task.
+ * @p: the task in question.
+ *
+ * Return: The priority value as seen by users in /proc.
+ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
+ * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO).
+ */
+int task_prio(const struct task_struct *p)
+{
+ int delta, prio = p->prio - MAX_RT_PRIO;
+
+ /* rt tasks and iso tasks */
+ if (prio <= 0)
+ goto out;
+
+ /* Convert to ms to avoid overflows */
+ delta = NS_TO_MS(p->deadline - task_rq(p)->niffies);
+ if (unlikely(delta < 0))
+ delta = 0;
+ delta = delta * 40 / ms_longest_deadline_diff();
+ if (delta <= 80)
+ prio += delta;
+ if (idleprio_task(p))
+ prio += 40;
+out:
+ return prio;
+}
+
+/**
+ * idle_cpu - is a given CPU idle currently?
+ * @cpu: the processor in question.
+ *
+ * Return: 1 if the CPU is currently idle. 0 otherwise.
+ */
+int idle_cpu(int cpu)
+{
+ return cpu_curr(cpu) == cpu_rq(cpu)->idle;
+}
+
+/**
+ * available_idle_cpu - is a given CPU idle for enqueuing work.
+ * @cpu: the CPU in question.
+ *
+ * Return: 1 if the CPU is currently idle. 0 otherwise.
+ */
+int available_idle_cpu(int cpu)
+{
+ if (!idle_cpu(cpu))
+ return 0;
+
+ if (vcpu_is_preempted(cpu))
+ return 0;
+
+ return 1;
+}
+
+/**
+ * idle_task - return the idle task for a given CPU.
+ * @cpu: the processor in question.
+ *
+ * Return: The idle task for the CPU @cpu.
+ */
+struct task_struct *idle_task(int cpu)
+{
+ return cpu_rq(cpu)->idle;
+}
+
+/**
+ * find_process_by_pid - find a process with a matching PID value.
+ * @pid: the pid in question.
+ *
+ * The task of @pid, if found. %NULL otherwise.
+ */
+static inline struct task_struct *find_process_by_pid(pid_t pid)
+{
+ return pid ? find_task_by_vpid(pid) : current;
+}
+
+/* Actually do priority change: must hold rq lock. */
+static void __setscheduler(struct task_struct *p, struct rq *rq, int policy,
+ int prio, bool keep_boost)
+{
+ int oldrtprio, oldprio;
+
+ p->policy = policy;
+ oldrtprio = p->rt_priority;
+ p->rt_priority = prio;
+ p->normal_prio = normal_prio(p);
+ oldprio = p->prio;
+ /*
+ * Keep a potential priority boosting if called from
+ * sched_setscheduler().
+ */
+ p->prio = normal_prio(p);
+ if (keep_boost)
+ p->prio = rt_effective_prio(p, p->prio);
+
+ if (task_running(rq, p)) {
+ set_rq_task(rq, p);
+ resched_task(p);
+ } else if (task_queued(p)) {
+ dequeue_task(rq, p, DEQUEUE_SAVE);
+ enqueue_task(rq, p, ENQUEUE_RESTORE);
+ if (p->prio < oldprio || p->rt_priority > oldrtprio)
+ try_preempt(p, rq);
+ }
+}
+
+/*
+ * Check the target process has a UID that matches the current process's
+ */
+static bool check_same_owner(struct task_struct *p)
+{
+ const struct cred *cred = current_cred(), *pcred;
+ bool match;
+
+ rcu_read_lock();
+ pcred = __task_cred(p);
+ match = (uid_eq(cred->euid, pcred->euid) ||
+ uid_eq(cred->euid, pcred->uid));
+ rcu_read_unlock();
+ return match;
+}
+
+static int __sched_setscheduler(struct task_struct *p,
+ const struct sched_attr *attr,
+ bool user, bool pi)
+{
+ int retval, policy = attr->sched_policy, oldpolicy = -1, priority = attr->sched_priority;
+ unsigned long rlim_rtprio = 0;
+ struct rq_flags rf;
+ int reset_on_fork;
+ struct rq *rq;
+
+ /* The pi code expects interrupts enabled */
+ BUG_ON(pi && in_interrupt());
+
+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
+ unsigned long lflags;
+
+ if (!lock_task_sighand(p, &lflags))
+ return -ESRCH;
+ rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
+ unlock_task_sighand(p, &lflags);
+ if (rlim_rtprio)
+ goto recheck;
+ /*
+ * If the caller requested an RT policy without having the
+ * necessary rights, we downgrade the policy to SCHED_ISO.
+ * We also set the parameter to zero to pass the checks.
+ */
+ policy = SCHED_ISO;
+ priority = 0;
+ }
+recheck:
+ /* Double check policy once rq lock held */
+ if (policy < 0) {
+ reset_on_fork = p->sched_reset_on_fork;
+ policy = oldpolicy = p->policy;
+ } else {
+ reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
+ policy &= ~SCHED_RESET_ON_FORK;
+
+ if (!SCHED_RANGE(policy))
+ return -EINVAL;
+ }
+
+ if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
+ return -EINVAL;
+
+ /*
+ * Valid priorities for SCHED_FIFO and SCHED_RR are
+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
+ * SCHED_BATCH is 0.
+ */
+ if (priority < 0 ||
+ (p->mm && priority > MAX_USER_RT_PRIO - 1) ||
+ (!p->mm && priority > MAX_RT_PRIO - 1))
+ return -EINVAL;
+ if (is_rt_policy(policy) != (priority != 0))
+ return -EINVAL;
+
+ /*
+ * Allow unprivileged RT tasks to decrease priority:
+ */
+ if (user && !capable(CAP_SYS_NICE)) {
+ if (is_rt_policy(policy)) {
+ unsigned long rlim_rtprio =
+ task_rlimit(p, RLIMIT_RTPRIO);
+
+ /* Can't set/change the rt policy */
+ if (policy != p->policy && !rlim_rtprio)
+ return -EPERM;
+
+ /* Can't increase priority */
+ if (priority > p->rt_priority &&
+ priority > rlim_rtprio)
+ return -EPERM;
+ } else {
+ switch (p->policy) {
+ /*
+ * Can only downgrade policies but not back to
+ * SCHED_NORMAL
+ */
+ case SCHED_ISO:
+ if (policy == SCHED_ISO)
+ goto out;
+ if (policy != SCHED_NORMAL)
+ return -EPERM;
+ break;
+ case SCHED_BATCH:
+ if (policy == SCHED_BATCH)
+ goto out;
+ if (policy != SCHED_IDLEPRIO)
+ return -EPERM;
+ break;
+ case SCHED_IDLEPRIO:
+ if (policy == SCHED_IDLEPRIO)
+ goto out;
+ return -EPERM;
+ default:
+ break;
+ }
+ }
+
+ /* Can't change other user's priorities */
+ if (!check_same_owner(p))
+ return -EPERM;
+
+ /* Normal users shall not reset the sched_reset_on_fork flag: */
+ if (p->sched_reset_on_fork && !reset_on_fork)
+ return -EPERM;
+ }
+
+ if (user) {
+ retval = security_task_setscheduler(p);
+ if (retval)
+ return retval;
+ }
+
+ /*
+ * Make sure no PI-waiters arrive (or leave) while we are
+ * changing the priority of the task:
+ *
+ * To be able to change p->policy safely, the runqueue lock must be
+ * held.
+ */
+ rq = task_rq_lock(p, &rf);
+ update_rq_clock(rq);
+
+ /*
+ * Changing the policy of the stop threads its a very bad idea:
+ */
+ if (p == rq->stop) {
+ task_rq_unlock(rq, p, &rf);
+ return -EINVAL;
+ }
+
+ /*
+ * If not changing anything there's no need to proceed further:
+ */
+ if (unlikely(policy == p->policy && (!is_rt_policy(policy) ||
+ priority == p->rt_priority))) {
+ task_rq_unlock(rq, p, &rf);
+ return 0;
+ }
+
+ /* Re-check policy now with rq lock held */
+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
+ policy = oldpolicy = -1;
+ task_rq_unlock(rq, p, &rf);
+ goto recheck;
+ }
+ p->sched_reset_on_fork = reset_on_fork;
+
+ __setscheduler(p, rq, policy, priority, pi);
+ task_rq_unlock(rq, p, &rf);
+
+ if (pi)
+ rt_mutex_adjust_pi(p);
+out:
+ return 0;
+}
+
+static int _sched_setscheduler(struct task_struct *p, int policy,
+ const struct sched_param *param, bool check)
+{
+ struct sched_attr attr = {
+ .sched_policy = policy,
+ .sched_priority = param->sched_priority,
+ .sched_nice = PRIO_TO_NICE(p->static_prio),
+ };
+
+ return __sched_setscheduler(p, &attr, check, true);
+}
+/**
+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Return: 0 on success. An error code otherwise.
+ *
+ * NOTE that the task may be already dead.
+ */
+int sched_setscheduler(struct task_struct *p, int policy,
+ const struct sched_param *param)
+{
+ return _sched_setscheduler(p, policy, param, true);
+}
+
+EXPORT_SYMBOL_GPL(sched_setscheduler);
+
+int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
+{
+ return __sched_setscheduler(p, attr, true, true);
+}
+EXPORT_SYMBOL_GPL(sched_setattr);
+
+int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
+{
+ return __sched_setscheduler(p, attr, false, true);
+}
+
+/**
+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
+ * @p: the task in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Just like sched_setscheduler, only don't bother checking if the
+ * current context has permission. For example, this is needed in
+ * stop_machine(): we create temporary high priority worker threads,
+ * but our caller might not have that capability.
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
+ const struct sched_param *param)
+{
+ return _sched_setscheduler(p, policy, param, false);
+}
+EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
+
+static int
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
+{
+ struct sched_param lparam;
+ struct task_struct *p;
+ int retval;
+
+ if (!param || pid < 0)
+ return -EINVAL;
+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
+ return -EFAULT;
+
+ rcu_read_lock();
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (p != NULL)
+ retval = sched_setscheduler(p, policy, &lparam);
+ rcu_read_unlock();
+
+ return retval;
+}
+
+/*
+ * Mimics kernel/events/core.c perf_copy_attr().
+ */
+static int sched_copy_attr(struct sched_attr __user *uattr,
+ struct sched_attr *attr)
+{
+ u32 size;
+ int ret;
+
+ if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
+ return -EFAULT;
+
+ /* Zero the full structure, so that a short copy will be nice: */
+ memset(attr, 0, sizeof(*attr));
+
+ ret = get_user(size, &uattr->size);
+ if (ret)
+ return ret;
+
+ /* Bail out on silly large: */
+ if (size > PAGE_SIZE)
+ goto err_size;
+
+ /* ABI compatibility quirk: */
+ if (!size)
+ size = SCHED_ATTR_SIZE_VER0;
+
+ if (size < SCHED_ATTR_SIZE_VER0)
+ goto err_size;
+
+ /*
+ * If we're handed a bigger struct than we know of,
+ * ensure all the unknown bits are 0 - i.e. new
+ * user-space does not rely on any kernel feature
+ * extensions we dont know about yet.
+ */
+ if (size > sizeof(*attr)) {
+ unsigned char __user *addr;
+ unsigned char __user *end;
+ unsigned char val;
+
+ addr = (void __user *)uattr + sizeof(*attr);
+ end = (void __user *)uattr + size;
+
+ for (; addr < end; addr++) {
+ ret = get_user(val, addr);
+ if (ret)
+ return ret;
+ if (val)
+ goto err_size;
+ }
+ size = sizeof(*attr);
+ }
+
+ ret = copy_from_user(attr, uattr, size);
+ if (ret)
+ return -EFAULT;
+
+ /*
+ * XXX: Do we want to be lenient like existing syscalls; or do we want
+ * to be strict and return an error on out-of-bounds values?
+ */
+ attr->sched_nice = clamp(attr->sched_nice, -20, 19);
+
+ /* sched/core.c uses zero here but we already know ret is zero */
+ return 0;
+
+err_size:
+ put_user(sizeof(*attr), &uattr->size);
+ return -E2BIG;
+}
+
+/*
+ * sched_setparam() passes in -1 for its policy, to let the functions
+ * it calls know not to change it.
+ */
+#define SETPARAM_POLICY -1
+
+/**
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
+ * @pid: the pid in question.
+ * @policy: new policy.
+ * @param: structure containing the new RT priority.
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
+{
+ if (policy < 0)
+ return -EINVAL;
+
+ return do_sched_setscheduler(pid, policy, param);
+}
+
+/**
+ * sys_sched_setparam - set/change the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the new RT priority.
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
+{
+ return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
+}
+
+/**
+ * sys_sched_setattr - same as above, but with extended sched_attr
+ * @pid: the pid in question.
+ * @uattr: structure containing the extended parameters.
+ */
+SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
+ unsigned int, flags)
+{
+ struct sched_attr attr;
+ struct task_struct *p;
+ int retval;
+
+ if (!uattr || pid < 0 || flags)
+ return -EINVAL;
+
+ retval = sched_copy_attr(uattr, &attr);
+ if (retval)
+ return retval;
+
+ if ((int)attr.sched_policy < 0)
+ return -EINVAL;
+
+ rcu_read_lock();
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (p != NULL)
+ retval = sched_setattr(p, &attr);
+ rcu_read_unlock();
+
+ return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
+ * @pid: the pid in question.
+ *
+ * Return: On success, the policy of the thread. Otherwise, a negative error
+ * code.
+ */
+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
+{
+ struct task_struct *p;
+ int retval = -EINVAL;
+
+ if (pid < 0)
+ goto out_nounlock;
+
+ retval = -ESRCH;
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ if (p) {
+ retval = security_task_getscheduler(p);
+ if (!retval)
+ retval = p->policy;
+ }
+ rcu_read_unlock();
+
+out_nounlock:
+ return retval;
+}
+
+/**
+ * sys_sched_getscheduler - get the RT priority of a thread
+ * @pid: the pid in question.
+ * @param: structure containing the RT priority.
+ *
+ * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
+ * code.
+ */
+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
+{
+ struct sched_param lp = { .sched_priority = 0 };
+ struct task_struct *p;
+ int retval = -EINVAL;
+
+ if (!param || pid < 0)
+ goto out_nounlock;
+
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ retval = -ESRCH;
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ if (has_rt_policy(p))
+ lp.sched_priority = p->rt_priority;
+ rcu_read_unlock();
+
+ /*
+ * This one might sleep, we cannot do it with a spinlock held ...
+ */
+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
+
+out_nounlock:
+ return retval;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
+static int sched_read_attr(struct sched_attr __user *uattr,
+ struct sched_attr *attr,
+ unsigned int usize)
+{
+ int ret;
+
+ if (!access_ok(uattr, usize))
+ return -EFAULT;
+
+ /*
+ * If we're handed a smaller struct than we know of,
+ * ensure all the unknown bits are 0 - i.e. old
+ * user-space does not get uncomplete information.
+ */
+ if (usize < sizeof(*attr)) {
+ unsigned char *addr;
+ unsigned char *end;
+
+ addr = (void *)attr + usize;
+ end = (void *)attr + sizeof(*attr);
+
+ for (; addr < end; addr++) {
+ if (*addr)
+ return -EFBIG;
+ }
+
+ attr->size = usize;
+ }
+
+ ret = copy_to_user(uattr, attr, attr->size);
+ if (ret)
+ return -EFAULT;
+
+ /* sched/core.c uses zero here but we already know ret is zero */
+ return ret;
+}
+
+/**
+ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
+ * @pid: the pid in question.
+ * @uattr: structure containing the extended parameters.
+ * @size: sizeof(attr) for fwd/bwd comp.
+ * @flags: for future extension.
+ */
+SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
+ unsigned int, size, unsigned int, flags)
+{
+ struct sched_attr attr = {
+ .size = sizeof(struct sched_attr),
+ };
+ struct task_struct *p;
+ int retval;
+
+ if (!uattr || pid < 0 || size > PAGE_SIZE ||
+ size < SCHED_ATTR_SIZE_VER0 || flags)
+ return -EINVAL;
+
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ retval = -ESRCH;
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ attr.sched_policy = p->policy;
+ if (rt_task(p))
+ attr.sched_priority = p->rt_priority;
+ else
+ attr.sched_nice = task_nice(p);
+
+ rcu_read_unlock();
+
+ retval = sched_read_attr(uattr, &attr, size);
+ return retval;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
+{
+ cpumask_var_t cpus_allowed, new_mask;
+ struct task_struct *p;
+ int retval;
+
+ rcu_read_lock();
+
+ p = find_process_by_pid(pid);
+ if (!p) {
+ rcu_read_unlock();
+ return -ESRCH;
+ }
+
+ /* Prevent p going away */
+ get_task_struct(p);
+ rcu_read_unlock();
+
+ if (p->flags & PF_NO_SETAFFINITY) {
+ retval = -EINVAL;
+ goto out_put_task;
+ }
+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
+ retval = -ENOMEM;
+ goto out_put_task;
+ }
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
+ retval = -ENOMEM;
+ goto out_free_cpus_allowed;
+ }
+ retval = -EPERM;
+ if (!check_same_owner(p)) {
+ rcu_read_lock();
+ if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
+ rcu_read_unlock();
+ goto out_unlock;
+ }
+ rcu_read_unlock();
+ }
+
+ retval = security_task_setscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ cpuset_cpus_allowed(p, cpus_allowed);
+ cpumask_and(new_mask, in_mask, cpus_allowed);
+again:
+ retval = __set_cpus_allowed_ptr(p, new_mask, true);
+
+ if (!retval) {
+ cpuset_cpus_allowed(p, cpus_allowed);
+ if (!cpumask_subset(new_mask, cpus_allowed)) {
+ /*
+ * We must have raced with a concurrent cpuset
+ * update. Just reset the cpus_allowed to the
+ * cpuset's cpus_allowed
+ */
+ cpumask_copy(new_mask, cpus_allowed);
+ goto again;
+ }
+ }
+out_unlock:
+ free_cpumask_var(new_mask);
+out_free_cpus_allowed:
+ free_cpumask_var(cpus_allowed);
+out_put_task:
+ put_task_struct(p);
+ return retval;
+}
+
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
+ cpumask_t *new_mask)
+{
+ if (len < cpumask_size())
+ cpumask_clear(new_mask);
+ else if (len > cpumask_size())
+ len = cpumask_size();
+
+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
+}
+
+
+/**
+ * sys_sched_setaffinity - set the CPU affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to the new CPU mask
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
+ unsigned long __user *, user_mask_ptr)
+{
+ cpumask_var_t new_mask;
+ int retval;
+
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
+ return -ENOMEM;
+
+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
+ if (retval == 0)
+ retval = sched_setaffinity(pid, new_mask);
+ free_cpumask_var(new_mask);
+ return retval;
+}
+
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
+{
+ struct task_struct *p;
+ unsigned long flags;
+ int retval;
+
+ get_online_cpus();
+ rcu_read_lock();
+
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+out_unlock:
+ rcu_read_unlock();
+ put_online_cpus();
+
+ return retval;
+}
+
+/**
+ * sys_sched_getaffinity - get the CPU affinity of a process
+ * @pid: pid of the process
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
+ * @user_mask_ptr: user-space pointer to hold the current CPU mask
+ *
+ * Return: 0 on success. An error code otherwise.
+ */
+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
+ unsigned long __user *, user_mask_ptr)
+{
+ int ret;
+ cpumask_var_t mask;
+
+ if ((len * BITS_PER_BYTE) < nr_cpu_ids)
+ return -EINVAL;
+ if (len & (sizeof(unsigned long)-1))
+ return -EINVAL;
+
+ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
+ return -ENOMEM;
+
+ ret = sched_getaffinity(pid, mask);
+ if (ret == 0) {
+ unsigned int retlen = min(len, cpumask_size());
+
+ if (copy_to_user(user_mask_ptr, mask, retlen))
+ ret = -EFAULT;
+ else
+ ret = retlen;
+ }
+ free_cpumask_var(mask);
+
+ return ret;
+}
+
+/**
+ * sys_sched_yield - yield the current processor to other threads.
+ *
+ * This function yields the current CPU to other tasks. It does this by
+ * scheduling away the current task. If it still has the earliest deadline
+ * it will be scheduled again as the next task.
+ *
+ * Return: 0.
+ */
+static void do_sched_yield(void)
+{
+ struct rq *rq;
+
+ if (!sched_yield_type)
+ return;
+
+ local_irq_disable();
+ rq = this_rq();
+ rq_lock(rq);
+
+ if (sched_yield_type > 1)
+ time_slice_expired(current, rq);
+ schedstat_inc(rq->yld_count);
+
+ /*
+ * Since we are going to call schedule() anyway, there's
+ * no need to preempt or enable interrupts:
+ */
+ preempt_disable();
+ rq_unlock(rq);
+ sched_preempt_enable_no_resched();
+
+ schedule();
+}
+
+SYSCALL_DEFINE0(sched_yield)
+{
+ do_sched_yield();
+ return 0;
+}
+
+#ifndef CONFIG_PREEMPT
+int __sched _cond_resched(void)
+{
+ if (should_resched(0)) {
+ preempt_schedule_common();
+ return 1;
+ }
+ rcu_all_qs();
+ return 0;
+}
+EXPORT_SYMBOL(_cond_resched);
+#endif
+
+/*
+ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
+ * call schedule, and on return reacquire the lock.
+ *
+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
+ * operations here to prevent schedule() from being called twice (once via
+ * spin_unlock(), once by hand).
+ */
+int __cond_resched_lock(spinlock_t *lock)
+{
+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
+ int ret = 0;
+
+ lockdep_assert_held(lock);
+
+ if (spin_needbreak(lock) || resched) {
+ spin_unlock(lock);
+ if (resched)
+ preempt_schedule_common();
+ else
+ cpu_relax();
+ ret = 1;
+ spin_lock(lock);
+ }
+ return ret;
+}
+EXPORT_SYMBOL(__cond_resched_lock);
+
+/**
+ * yield - yield the current processor to other threads.
+ *
+ * Do not ever use this function, there's a 99% chance you're doing it wrong.
+ *
+ * The scheduler is at all times free to pick the calling task as the most
+ * eligible task to run, if removing the yield() call from your code breaks
+ * it, its already broken.
+ *
+ * Typical broken usage is:
+ *
+ * while (!event)
+ * yield();
+ *
+ * where one assumes that yield() will let 'the other' process run that will
+ * make event true. If the current task is a SCHED_FIFO task that will never
+ * happen. Never use yield() as a progress guarantee!!
+ *
+ * If you want to use yield() to wait for something, use wait_event().
+ * If you want to use yield() to be 'nice' for others, use cond_resched().
+ * If you still want to use yield(), do not!
+ */
+void __sched yield(void)
+{
+ set_current_state(TASK_RUNNING);
+ do_sched_yield();
+}
+EXPORT_SYMBOL(yield);
+
+/**
+ * yield_to - yield the current processor to another thread in
+ * your thread group, or accelerate that thread toward the
+ * processor it's on.
+ * @p: target task
+ * @preempt: whether task preemption is allowed or not
+ *
+ * It's the caller's job to ensure that the target task struct
+ * can't go away on us before we can do any checks.
+ *
+ * Return:
+ * true (>0) if we indeed boosted the target task.
+ * false (0) if we failed to boost the target.
+ * -ESRCH if there's no task to yield to.
+ */
+int __sched yield_to(struct task_struct *p, bool preempt)
+{
+ struct task_struct *rq_p;
+ struct rq *rq, *p_rq;
+ unsigned long flags;
+ int yielded = 0;
+
+ local_irq_save(flags);
+ rq = this_rq();
+
+again:
+ p_rq = task_rq(p);
+ /*
+ * If we're the only runnable task on the rq and target rq also
+ * has only one task, there's absolutely no point in yielding.
+ */
+ if (task_running(p_rq, p) || p->state) {
+ yielded = -ESRCH;
+ goto out_irq;
+ }
+
+ double_rq_lock(rq, p_rq);
+ if (unlikely(task_rq(p) != p_rq)) {
+ double_rq_unlock(rq, p_rq);
+ goto again;
+ }
+
+ yielded = 1;
+ schedstat_inc(rq->yld_count);
+ rq_p = rq->curr;
+ if (p->deadline > rq_p->deadline)
+ p->deadline = rq_p->deadline;
+ p->time_slice += rq_p->time_slice;
+ if (p->time_slice > timeslice())
+ p->time_slice = timeslice();
+ time_slice_expired(rq_p, rq);
+ if (preempt && rq != p_rq)
+ resched_task(p_rq->curr);
+ double_rq_unlock(rq, p_rq);
+out_irq:
+ local_irq_restore(flags);
+
+ if (yielded > 0)
+ schedule();
+ return yielded;
+}
+EXPORT_SYMBOL_GPL(yield_to);
+
+int io_schedule_prepare(void)
+{
+ int old_iowait = current->in_iowait;
+
+ current->in_iowait = 1;
+ blk_schedule_flush_plug(current);
+
+ return old_iowait;
+}
+
+void io_schedule_finish(int token)
+{
+ current->in_iowait = token;
+}
+
+/*
+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
+ * that process accounting knows that this is a task in IO wait state.
+ *
+ * But don't do that if it is a deliberate, throttling IO wait (this task
+ * has set its backing_dev_info: the queue against which it should throttle)
+ */
+
+long __sched io_schedule_timeout(long timeout)
+{
+ int token;
+ long ret;
+
+ token = io_schedule_prepare();
+ ret = schedule_timeout(timeout);
+ io_schedule_finish(token);
+
+ return ret;
+}
+EXPORT_SYMBOL(io_schedule_timeout);
+
+void io_schedule(void)
+{
+ int token;
+
+ token = io_schedule_prepare();
+ schedule();
+ io_schedule_finish(token);
+}
+EXPORT_SYMBOL(io_schedule);
+
+/**
+ * sys_sched_get_priority_max - return maximum RT priority.
+ * @policy: scheduling class.
+ *
+ * Return: On success, this syscall returns the maximum
+ * rt_priority that can be used by a given scheduling class.
+ * On failure, a negative error code is returned.
+ */
+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
+{
+ int ret = -EINVAL;
+
+ switch (policy) {
+ case SCHED_FIFO:
+ case SCHED_RR:
+ ret = MAX_USER_RT_PRIO-1;
+ break;
+ case SCHED_NORMAL:
+ case SCHED_BATCH:
+ case SCHED_ISO:
+ case SCHED_IDLEPRIO:
+ ret = 0;
+ break;
+ }
+ return ret;
+}
+
+/**
+ * sys_sched_get_priority_min - return minimum RT priority.
+ * @policy: scheduling class.
+ *
+ * Return: On success, this syscall returns the minimum
+ * rt_priority that can be used by a given scheduling class.
+ * On failure, a negative error code is returned.
+ */
+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
+{
+ int ret = -EINVAL;
+
+ switch (policy) {
+ case SCHED_FIFO:
+ case SCHED_RR:
+ ret = 1;
+ break;
+ case SCHED_NORMAL:
+ case SCHED_BATCH:
+ case SCHED_ISO:
+ case SCHED_IDLEPRIO:
+ ret = 0;
+ break;
+ }
+ return ret;
+}
+
+static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
+{
+ struct task_struct *p;
+ unsigned int time_slice;
+ struct rq_flags rf;
+ struct rq *rq;
+ int retval;
+
+ if (pid < 0)
+ return -EINVAL;
+
+ retval = -ESRCH;
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ rq = task_rq_lock(p, &rf);
+ time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p));
+ task_rq_unlock(rq, p, &rf);
+
+ rcu_read_unlock();
+ *t = ns_to_timespec64(time_slice);
+ return 0;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
+/**
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
+ * @pid: pid of the process.
+ * @interval: userspace pointer to the timeslice value.
+ *
+ * this syscall writes the default timeslice value of a given process
+ * into the user-space timespec buffer. A value of '0' means infinity.
+ *
+ * Return: On success, 0 and the timeslice is in @interval. Otherwise,
+ * an error code.
+ */
+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
+ struct __kernel_timespec __user *, interval)
+{
+ struct timespec64 t;
+ int retval = sched_rr_get_interval(pid, &t);
+
+ if (retval == 0)
+ retval = put_timespec64(&t, interval);
+
+ return retval;
+}
+
+#ifdef CONFIG_COMPAT_32BIT_TIME
+SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
+ struct old_timespec32 __user *, interval)
+{
+ struct timespec64 t;
+ int retval = sched_rr_get_interval(pid, &t);
+
+ if (retval == 0)
+ retval = put_old_timespec32(&t, interval);
+ return retval;
+}
+#endif
+
+void sched_show_task(struct task_struct *p)
+{
+ unsigned long free = 0;
+ int ppid;
+
+ if (!try_get_task_stack(p))
+ return;
+
+ printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
+
+ if (p->state == TASK_RUNNING)
+ printk(KERN_CONT " running task ");
+#ifdef CONFIG_DEBUG_STACK_USAGE
+ free = stack_not_used(p);
+#endif
+ ppid = 0;
+ rcu_read_lock();
+ if (pid_alive(p))
+ ppid = task_pid_nr(rcu_dereference(p->real_parent));
+ rcu_read_unlock();
+ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
+ task_pid_nr(p), ppid,
+ (unsigned long)task_thread_info(p)->flags);
+
+ print_worker_info(KERN_INFO, p);
+ show_stack(p, NULL);
+ put_task_stack(p);
+}
+EXPORT_SYMBOL_GPL(sched_show_task);
+
+static inline bool
+state_filter_match(unsigned long state_filter, struct task_struct *p)
+{
+ /* no filter, everything matches */
+ if (!state_filter)
+ return true;
+
+ /* filter, but doesn't match */
+ if (!(p->state & state_filter))
+ return false;
+
+ /*
+ * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
+ * TASK_KILLABLE).
+ */
+ if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
+ return false;
+
+ return true;
+}
+
+void show_state_filter(unsigned long state_filter)
+{
+ struct task_struct *g, *p;
+
+#if BITS_PER_LONG == 32
+ printk(KERN_INFO
+ " task PC stack pid father\n");
+#else
+ printk(KERN_INFO
+ " task PC stack pid father\n");
+#endif
+ rcu_read_lock();
+ for_each_process_thread(g, p) {
+ /*
+ * reset the NMI-timeout, listing all files on a slow
+ * console might take a lot of time:
+ * Also, reset softlockup watchdogs on all CPUs, because
+ * another CPU might be blocked waiting for us to process
+ * an IPI.
+ */
+ touch_nmi_watchdog();
+ touch_all_softlockup_watchdogs();
+ if (state_filter_match(state_filter, p))
+ sched_show_task(p);
+ }
+
+ rcu_read_unlock();
+ /*
+ * Only show locks if all tasks are dumped:
+ */
+ if (!state_filter)
+ debug_show_all_locks();
+}
+
+void dump_cpu_task(int cpu)
+{
+ pr_info("Task dump for CPU %d:\n", cpu);
+ sched_show_task(cpu_curr(cpu));
+}
+
+#ifdef CONFIG_SMP
+void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
+{
+ cpumask_copy(&p->cpus_allowed, new_mask);
+ p->nr_cpus_allowed = cpumask_weight(new_mask);
+}
+
+void __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_held(&p->pi_lock);
+
+ cpumask_copy(&p->cpus_allowed, new_mask);
+
+ if (task_queued(p)) {
+ /*
+ * Because __kthread_bind() calls this on blocked tasks without
+ * holding rq->lock.
+ */
+ lockdep_assert_held(rq->lock);
+ }
+}
+
+/*
+ * Calling do_set_cpus_allowed from outside the scheduler code should not be
+ * called on a running or queued task. We should be holding pi_lock.
+ */
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ __do_set_cpus_allowed(p, new_mask);
+ if (needs_other_cpu(p, task_cpu(p))) {
+ struct rq *rq;
+
+ rq = __task_rq_lock(p, NULL);
+ set_task_cpu(p, valid_task_cpu(p));
+ resched_task(p);
+ __task_rq_unlock(rq, NULL);
+ }
+}
+#endif
+
+/**
+ * init_idle - set up an idle thread for a given CPU
+ * @idle: task in question
+ * @cpu: cpu the idle task belongs to
+ *
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
+ * flag, to make booting more robust.
+ */
+void init_idle(struct task_struct *idle, int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&idle->pi_lock, flags);
+ raw_spin_lock(rq->lock);
+ idle->last_ran = rq->niffies;
+ time_slice_expired(idle, rq);
+ idle->state = TASK_RUNNING;
+ /* Setting prio to illegal value shouldn't matter when never queued */
+ idle->prio = PRIO_LIMIT;
+
+ kasan_unpoison_task_stack(idle);
+
+#ifdef CONFIG_SMP
+ /*
+ * It's possible that init_idle() gets called multiple times on a task,
+ * in that case do_set_cpus_allowed() will not do the right thing.
+ *
+ * And since this is boot we can forgo the serialisation.
+ */
+ set_cpus_allowed_common(idle, cpumask_of(cpu));
+#ifdef CONFIG_SMT_NICE
+ idle->smt_bias = 0;
+#endif
+#endif
+ set_rq_task(rq, idle);
+
+ /* Silence PROVE_RCU */
+ rcu_read_lock();
+ set_task_cpu(idle, cpu);
+ rcu_read_unlock();
+
+ rq->curr = rq->idle = idle;
+ idle->on_rq = TASK_ON_RQ_QUEUED;
+ raw_spin_unlock(rq->lock);
+ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
+
+ /* Set the preempt count _outside_ the spinlocks! */
+ init_idle_preempt_count(idle, cpu);
+
+ ftrace_graph_init_idle_task(idle, cpu);
+ vtime_init_idle(idle, cpu);
+#ifdef CONFIG_SMP
+ sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
+#endif
+}
+
+int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
+ const struct cpumask __maybe_unused *trial)
+{
+ return 1;
+}
+
+int task_can_attach(struct task_struct *p,
+ const struct cpumask *cs_cpus_allowed)
+{
+ int ret = 0;
+
+ /*
+ * Kthreads which disallow setaffinity shouldn't be moved
+ * to a new cpuset; we don't want to change their CPU
+ * affinity and isolating such threads by their set of
+ * allowed nodes is unnecessary. Thus, cpusets are not
+ * applicable for such threads. This prevents checking for
+ * success of set_cpus_allowed_ptr() on all attached tasks
+ * before cpus_allowed may be changed.
+ */
+ if (p->flags & PF_NO_SETAFFINITY)
+ ret = -EINVAL;
+
+ return ret;
+}
+
+void resched_cpu(int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
+
+ rq_lock_irqsave(rq, &rf);
+ if (cpu_online(cpu) || cpu == smp_processor_id())
+ resched_curr(rq);
+ rq_unlock_irqrestore(rq, &rf);
+}
+
+#ifdef CONFIG_SMP
+#ifdef CONFIG_NO_HZ_COMMON
+void nohz_balance_enter_idle(int cpu)
+{
+}
+
+void select_nohz_load_balancer(int stop_tick)
+{
+}
+
+void set_cpu_sd_state_idle(void) {}
+
+/*
+ * In the semi idle case, use the nearest busy CPU for migrating timers
+ * from an idle CPU. This is good for power-savings.
+ *
+ * We don't do similar optimization for completely idle system, as
+ * selecting an idle CPU will add more delays to the timers than intended
+ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
+ */
+int get_nohz_timer_target(void)
+{
+ int i, cpu = smp_processor_id();
+ struct sched_domain *sd;
+
+ if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
+ return cpu;
+
+ rcu_read_lock();
+ for_each_domain(cpu, sd) {
+ for_each_cpu(i, sched_domain_span(sd)) {
+ if (cpu == i)
+ continue;
+
+ if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
+ cpu = i;
+ cpu = i;
+ goto unlock;
+ }
+ }
+ }
+
+ if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
+ cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
+unlock:
+ rcu_read_unlock();
+ return cpu;
+}
+
+/*
+ * When add_timer_on() enqueues a timer into the timer wheel of an
+ * idle CPU then this timer might expire before the next timer event
+ * which is scheduled to wake up that CPU. In case of a completely
+ * idle system the next event might even be infinite time into the
+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
+ * leaves the inner idle loop so the newly added timer is taken into
+ * account when the CPU goes back to idle and evaluates the timer
+ * wheel for the next timer event.
+ */
+void wake_up_idle_cpu(int cpu)
+{
+ if (cpu == smp_processor_id())
+ return;
+
+ if (set_nr_and_not_polling(cpu_rq(cpu)->idle))
+ smp_sched_reschedule(cpu);
+ else
+ trace_sched_wake_idle_without_ipi(cpu);
+}
+
+static bool wake_up_full_nohz_cpu(int cpu)
+{
+ /*
+ * We just need the target to call irq_exit() and re-evaluate
+ * the next tick. The nohz full kick at least implies that.
+ * If needed we can still optimize that later with an
+ * empty IRQ.
+ */
+ if (cpu_is_offline(cpu))
+ return true; /* Don't try to wake offline CPUs. */
+ if (tick_nohz_full_cpu(cpu)) {
+ if (cpu != smp_processor_id() ||
+ tick_nohz_tick_stopped())
+ tick_nohz_full_kick_cpu(cpu);
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Wake up the specified CPU. If the CPU is going offline, it is the
+ * caller's responsibility to deal with the lost wakeup, for example,
+ * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
+ */
+void wake_up_nohz_cpu(int cpu)
+{
+ if (!wake_up_full_nohz_cpu(cpu))
+ wake_up_idle_cpu(cpu);
+}
+#endif /* CONFIG_NO_HZ_COMMON */
+
+/*
+ * Change a given task's CPU affinity. Migrate the thread to a
+ * proper CPU and schedule it away if the CPU it's executing on
+ * is removed from the allowed bitmask.
+ *
+ * NOTE: the caller must have a valid reference to the task, the
+ * task must not exit() & deallocate itself prematurely. The
+ * call is not atomic; no spinlocks may be held.
+ */
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
+{
+ const struct cpumask *cpu_valid_mask = cpu_active_mask;
+ bool queued = false, running_wrong = false, kthread;
+ struct cpumask old_mask;
+ struct rq_flags rf;
+ int cpu, ret = 0;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+ update_rq_clock(rq);
+
+ kthread = !!(p->flags & PF_KTHREAD);
+ if (kthread) {
+ /*
+ * Kernel threads are allowed on online && !active CPUs
+ */
+ cpu_valid_mask = cpu_online_mask;
+ }
+
+ /*
+ * Must re-check here, to close a race against __kthread_bind(),
+ * sched_setaffinity() is not guaranteed to observe the flag.
+ */
+ if (check && (p->flags & PF_NO_SETAFFINITY)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ cpumask_copy(&old_mask, &p->cpus_allowed);
+ if (cpumask_equal(&old_mask, new_mask))
+ goto out;
+
+ if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ queued = task_queued(p);
+ __do_set_cpus_allowed(p, new_mask);
+
+ if (kthread) {
+ /*
+ * For kernel threads that do indeed end up on online &&
+ * !active we want to ensure they are strict per-CPU threads.
+ */
+ WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
+ !cpumask_intersects(new_mask, cpu_active_mask) &&
+ p->nr_cpus_allowed != 1);
+ }
+
+ /* Can the task run on the task's current CPU? If so, we're done */
+ if (cpumask_test_cpu(task_cpu(p), new_mask))
+ goto out;
+
+ if (task_running(rq, p)) {
+ /* Task is running on the wrong cpu now, reschedule it. */
+ if (rq == this_rq()) {
+ cpu = cpumask_any_and(cpu_valid_mask, new_mask);
+ set_task_cpu(p, cpu);
+ set_tsk_need_resched(p);
+ running_wrong = true;
+ } else
+ resched_task(p);
+ } else {
+ cpu = cpumask_any_and(cpu_valid_mask, new_mask);
+ if (queued) {
+ /*
+ * Switch runqueue locks after dequeueing the task
+ * here while still holding the pi_lock to be holding
+ * the correct lock for enqueueing.
+ */
+ dequeue_task(rq, p, 0);
+ rq_unlock(rq);
+
+ rq = cpu_rq(cpu);
+ rq_lock(rq);
+ }
+ set_task_cpu(p, cpu);
+ if (queued)
+ enqueue_task(rq, p, 0);
+ }
+ if (queued)
+ try_preempt(p, rq);
+ if (running_wrong)
+ preempt_disable();
+out:
+ task_rq_unlock(rq, p, &rf);
+
+ if (running_wrong) {
+ __schedule(true);
+ preempt_enable();
+ }
+
+ return ret;
+}
+
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+ return __set_cpus_allowed_ptr(p, new_mask, false);
+}
+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
+
+#ifdef CONFIG_HOTPLUG_CPU
+/*
+ * Run through task list and find tasks affined to the dead cpu, then remove
+ * that cpu from the list, enable cpu0 and set the zerobound flag. Must hold
+ * cpu 0 and src_cpu's runqueue locks.
+ */
+static void bind_zero(int src_cpu)
+{
+ struct task_struct *p, *t;
+ struct rq *rq0;
+ int bound = 0;
+
+ if (src_cpu == 0)
+ return;
+
+ rq0 = cpu_rq(0);
+
+ do_each_thread(t, p) {
+ if (cpumask_test_cpu(src_cpu, &p->cpus_allowed)) {
+ bool local = (task_cpu(p) == src_cpu);
+ struct rq *rq = task_rq(p);
+
+ /* task_running is the cpu stopper thread */
+ if (local && task_running(rq, p))
+ continue;
+ atomic_clear_cpu(src_cpu, &p->cpus_allowed);
+ atomic_set_cpu(0, &p->cpus_allowed);
+ p->zerobound = true;
+ bound++;
+ if (local) {
+ bool queued = task_queued(p);
+
+ if (queued)
+ dequeue_task(rq, p, 0);
+ set_task_cpu(p, 0);
+ if (queued)
+ enqueue_task(rq0, p, 0);
+ }
+ }
+ } while_each_thread(t, p);
+
+ if (bound) {
+ printk(KERN_INFO "Removed affinity for %d processes to cpu %d\n",
+ bound, src_cpu);
+ }
+}
+
+/* Find processes with the zerobound flag and reenable their affinity for the
+ * CPU coming alive. */
+static void unbind_zero(int src_cpu)
+{
+ int unbound = 0, zerobound = 0;
+ struct task_struct *p, *t;
+
+ if (src_cpu == 0)
+ return;
+
+ do_each_thread(t, p) {
+ if (!p->mm)
+ p->zerobound = false;
+ if (p->zerobound) {
+ unbound++;
+ cpumask_set_cpu(src_cpu, &p->cpus_allowed);
+ /* Once every CPU affinity has been re-enabled, remove
+ * the zerobound flag */
+ if (cpumask_subset(cpu_possible_mask, &p->cpus_allowed)) {
+ p->zerobound = false;
+ zerobound++;
+ }
+ }
+ } while_each_thread(t, p);
+
+ if (unbound) {
+ printk(KERN_INFO "Added affinity for %d processes to cpu %d\n",
+ unbound, src_cpu);
+ }
+ if (zerobound) {
+ printk(KERN_INFO "Released forced binding to cpu0 for %d processes\n",
+ zerobound);
+ }
+}
+
+/*
+ * Ensure that the idle task is using init_mm right before its cpu goes
+ * offline.
+ */
+void idle_task_exit(void)
+{
+ struct mm_struct *mm = current->active_mm;
+
+ BUG_ON(cpu_online(smp_processor_id()));
+
+ if (mm != &init_mm) {
+ switch_mm(mm, &init_mm, current);
+ current->active_mm = &init_mm;
+ finish_arch_post_lock_switch();
+ }
+ mmdrop(mm);
+}
+#else /* CONFIG_HOTPLUG_CPU */
+static void unbind_zero(int src_cpu) {}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+void sched_set_stop_task(int cpu, struct task_struct *stop)
+{
+ struct sched_param stop_param = { .sched_priority = STOP_PRIO };
+ struct sched_param start_param = { .sched_priority = 0 };
+ struct task_struct *old_stop = cpu_rq(cpu)->stop;
+
+ if (stop) {
+ /*
+ * Make it appear like a SCHED_FIFO task, its something
+ * userspace knows about and won't get confused about.
+ *
+ * Also, it will make PI more or less work without too
+ * much confusion -- but then, stop work should not
+ * rely on PI working anyway.
+ */
+ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
+ }
+
+ cpu_rq(cpu)->stop = stop;
+
+ if (old_stop) {
+ /*
+ * Reset it back to a normal scheduling policy so that
+ * it can die in pieces.
+ */
+ sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
+ }
+}
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+
+static struct ctl_table sd_ctl_dir[] = {
+ {
+ .procname = "sched_domain",
+ .mode = 0555,
+ },
+ {}
+};
+
+static struct ctl_table sd_ctl_root[] = {
+ {
+ .procname = "kernel",
+ .mode = 0555,
+ .child = sd_ctl_dir,
+ },
+ {}
+};
+
+static struct ctl_table *sd_alloc_ctl_entry(int n)
+{
+ struct ctl_table *entry =
+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
+
+ return entry;
+}
+
+static void sd_free_ctl_entry(struct ctl_table **tablep)
+{
+ struct ctl_table *entry;
+
+ /*
+ * In the intermediate directories, both the child directory and
+ * procname are dynamically allocated and could fail but the mode
+ * will always be set. In the lowest directory the names are
+ * static strings and all have proc handlers.
+ */
+ for (entry = *tablep; entry->mode; entry++) {
+ if (entry->child)
+ sd_free_ctl_entry(&entry->child);
+ if (entry->proc_handler == NULL)
+ kfree(entry->procname);
+ }
+
+ kfree(*tablep);
+ *tablep = NULL;
+}
+
+#define CPU_LOAD_IDX_MAX 5
+static int min_load_idx = 0;
+static int max_load_idx = CPU_LOAD_IDX_MAX-1;
+
+static void
+set_table_entry(struct ctl_table *entry,
+ const char *procname, void *data, int maxlen,
+ umode_t mode, proc_handler *proc_handler,
+ bool load_idx)
+{
+ entry->procname = procname;
+ entry->data = data;
+ entry->maxlen = maxlen;
+ entry->mode = mode;
+ entry->proc_handler = proc_handler;
+
+ if (load_idx) {
+ entry->extra1 = &min_load_idx;
+ entry->extra2 = &max_load_idx;
+ }
+}
+
+static struct ctl_table *
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
+{
+ struct ctl_table *table = sd_alloc_ctl_entry(14);
+
+ if (table == NULL)
+ return NULL;
+
+ set_table_entry(&table[0], "min_interval", &sd->min_interval,
+ sizeof(long), 0644, proc_doulongvec_minmax, false);
+ set_table_entry(&table[1], "max_interval", &sd->max_interval,
+ sizeof(long), 0644, proc_doulongvec_minmax, false);
+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
+ sizeof(int), 0644, proc_dointvec_minmax, true);
+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[9], "cache_nice_tries",
+ &sd->cache_nice_tries,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[10], "flags", &sd->flags,
+ sizeof(int), 0644, proc_dointvec_minmax, false);
+ set_table_entry(&table[11], "max_newidle_lb_cost",
+ &sd->max_newidle_lb_cost,
+ sizeof(long), 0644, proc_doulongvec_minmax, false);
+ set_table_entry(&table[12], "name", sd->name,
+ CORENAME_MAX_SIZE, 0444, proc_dostring, false);
+ /* &table[13] is terminator */
+
+ return table;
+}
+
+static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
+{
+ struct ctl_table *entry, *table;
+ struct sched_domain *sd;
+ int domain_num = 0, i;
+ char buf[32];
+
+ for_each_domain(cpu, sd)
+ domain_num++;
+ entry = table = sd_alloc_ctl_entry(domain_num + 1);
+ if (table == NULL)
+ return NULL;
+
+ i = 0;
+ for_each_domain(cpu, sd) {
+ snprintf(buf, 32, "domain%d", i);
+ entry->procname = kstrdup(buf, GFP_KERNEL);
+ entry->mode = 0555;
+ entry->child = sd_alloc_ctl_domain_table(sd);
+ entry++;
+ i++;
+ }
+ return table;
+}
+
+static cpumask_var_t sd_sysctl_cpus;
+static struct ctl_table_header *sd_sysctl_header;
+
+void register_sched_domain_sysctl(void)
+{
+ static struct ctl_table *cpu_entries;
+ static struct ctl_table **cpu_idx;
+ char buf[32];
+ int i;
+
+ if (!cpu_entries) {
+ cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
+ if (!cpu_entries)
+ return;
+
+ WARN_ON(sd_ctl_dir[0].child);
+ sd_ctl_dir[0].child = cpu_entries;
+ }
+
+ if (!cpu_idx) {
+ struct ctl_table *e = cpu_entries;
+
+ cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
+ if (!cpu_idx)
+ return;
+
+ /* deal with sparse possible map */
+ for_each_possible_cpu(i) {
+ cpu_idx[i] = e;
+ e++;
+ }
+ }
+
+ if (!cpumask_available(sd_sysctl_cpus)) {
+ if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
+ return;
+
+ /* init to possible to not have holes in @cpu_entries */
+ cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
+ }
+
+ for_each_cpu(i, sd_sysctl_cpus) {
+ struct ctl_table *e = cpu_idx[i];
+
+ if (e->child)
+ sd_free_ctl_entry(&e->child);
+
+ if (!e->procname) {
+ snprintf(buf, 32, "cpu%d", i);
+ e->procname = kstrdup(buf, GFP_KERNEL);
+ }
+ e->mode = 0555;
+ e->child = sd_alloc_ctl_cpu_table(i);
+
+ __cpumask_clear_cpu(i, sd_sysctl_cpus);
+ }
+
+ WARN_ON(sd_sysctl_header);
+ sd_sysctl_header = register_sysctl_table(sd_ctl_root);
+}
+
+void dirty_sched_domain_sysctl(int cpu)
+{
+ if (cpumask_available(sd_sysctl_cpus))
+ __cpumask_set_cpu(cpu, sd_sysctl_cpus);
+}
+
+/* may be called multiple times per register */
+void unregister_sched_domain_sysctl(void)
+{
+ unregister_sysctl_table(sd_sysctl_header);
+ sd_sysctl_header = NULL;
+}
+#endif /* CONFIG_SYSCTL */
+
+void set_rq_online(struct rq *rq)
+{
+ if (!rq->online) {
+ cpumask_set_cpu(cpu_of(rq), rq->rd->online);
+ rq->online = true;
+ }
+}
+
+void set_rq_offline(struct rq *rq)
+{
+ if (rq->online) {
+ int cpu = cpu_of(rq);
+
+ cpumask_clear_cpu(cpu, rq->rd->online);
+ rq->online = false;
+ clear_cpuidle_map(cpu);
+ }
+}
+
+/*
+ * used to mark begin/end of suspend/resume:
+ */
+static int num_cpus_frozen;
+
+/*
+ * Update cpusets according to cpu_active mask. If cpusets are
+ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
+ * around partition_sched_domains().
+ *
+ * If we come here as part of a suspend/resume, don't touch cpusets because we
+ * want to restore it back to its original state upon resume anyway.
+ */
+static void cpuset_cpu_active(void)
+{
+ if (cpuhp_tasks_frozen) {
+ /*
+ * num_cpus_frozen tracks how many CPUs are involved in suspend
+ * resume sequence. As long as this is not the last online
+ * operation in the resume sequence, just build a single sched
+ * domain, ignoring cpusets.
+ */
+ partition_sched_domains(1, NULL, NULL);
+ if (--num_cpus_frozen)
+ return;
+ /*
+ * This is the last CPU online operation. So fall through and
+ * restore the original sched domains by considering the
+ * cpuset configurations.
+ */
+ cpuset_force_rebuild();
+ }
+
+ cpuset_update_active_cpus();
+}
+
+static int cpuset_cpu_inactive(unsigned int cpu)
+{
+ if (!cpuhp_tasks_frozen) {
+ cpuset_update_active_cpus();
+ } else {
+ num_cpus_frozen++;
+ partition_sched_domains(1, NULL, NULL);
+ }
+ return 0;
+}
+
+int sched_cpu_activate(unsigned int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ struct rq_flags rf;
+
+ set_cpu_active(cpu, true);
+
+ if (sched_smp_initialized) {
+ sched_domains_numa_masks_set(cpu);
+ cpuset_cpu_active();
+ }
+
+ /*
+ * Put the rq online, if not already. This happens:
+ *
+ * 1) In the early boot process, because we build the real domains
+ * after all CPUs have been brought up.
+ *
+ * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
+ * domains.
+ */
+ rq_lock_irqsave(rq, &rf);
+ if (rq->rd) {
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_online(rq);
+ }
+ unbind_zero(cpu);
+ rq_unlock_irqrestore(rq, &rf);
+
+ return 0;
+}
+
+int sched_cpu_deactivate(unsigned int cpu)
+{
+ int ret;
+
+ set_cpu_active(cpu, false);
+ /*
+ * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
+ * users of this state to go away such that all new such users will
+ * observe it.
+ *
+ * Do sync before park smpboot threads to take care the rcu boost case.
+ */
+ synchronize_rcu();
+
+ if (!sched_smp_initialized)
+ return 0;
+
+ ret = cpuset_cpu_inactive(cpu);
+ if (ret) {
+ set_cpu_active(cpu, true);
+ return ret;
+ }
+ sched_domains_numa_masks_clear(cpu);
+ return 0;
+}
+
+int sched_cpu_starting(unsigned int cpu)
+{
+ sched_tick_start(cpu);
+ return 0;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+int sched_cpu_dying(unsigned int cpu)
+{
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ /* Handle pending wakeups and then migrate everything off */
+ sched_ttwu_pending();
+ sched_tick_stop(cpu);
+
+ local_irq_save(flags);
+ double_rq_lock(rq, cpu_rq(0));
+ if (rq->rd) {
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_offline(rq);
+ }
+ bind_zero(cpu);
+ double_rq_unlock(rq, cpu_rq(0));
+ sched_start_tick(rq, cpu);
+ hrexpiry_clear(rq);
+ local_irq_restore(flags);
+
+ return 0;
+}
+#endif
+
+#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
+/*
+ * Cheaper version of the below functions in case support for SMT and MC is
+ * compiled in but CPUs have no siblings.
+ */
+static bool sole_cpu_idle(struct rq *rq)
+{
+ return rq_idle(rq);
+}
+#endif
+#ifdef CONFIG_SCHED_SMT
+static const cpumask_t *thread_cpumask(int cpu)
+{
+ return topology_sibling_cpumask(cpu);
+}
+/* All this CPU's SMT siblings are idle */
+static bool siblings_cpu_idle(struct rq *rq)
+{
+ return cpumask_subset(&rq->thread_mask, &cpu_idle_map);
+}
+#endif
+#ifdef CONFIG_SCHED_MC
+static const cpumask_t *core_cpumask(int cpu)
+{
+ return topology_core_cpumask(cpu);
+}
+/* All this CPU's shared cache siblings are idle */
+static bool cache_cpu_idle(struct rq *rq)
+{
+ return cpumask_subset(&rq->core_mask, &cpu_idle_map);
+}
+#endif
+
+enum sched_domain_level {
+ SD_LV_NONE = 0,
+ SD_LV_SIBLING,
+ SD_LV_MC,
+ SD_LV_BOOK,
+ SD_LV_CPU,
+ SD_LV_NODE,
+ SD_LV_ALLNODES,
+ SD_LV_MAX
+};
+
+void __init sched_init_smp(void)
+{
+ struct rq *rq, *other_rq, *leader = cpu_rq(0);
+ struct sched_domain *sd;
+ int cpu, other_cpu, i;
+#ifdef CONFIG_SCHED_SMT
+ bool smt_threads = false;
+#endif
+ sched_init_numa();
+
+ /*
+ * There's no userspace yet to cause hotplug operations; hence all the
+ * cpu masks are stable and all blatant races in the below code cannot
+ * happen.
+ */
+ mutex_lock(&sched_domains_mutex);
+ sched_init_domains(cpu_active_mask);
+ mutex_unlock(&sched_domains_mutex);
+
+ /* Move init over to a non-isolated CPU */
+ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
+ BUG();
+
+ local_irq_disable();
+ mutex_lock(&sched_domains_mutex);
+ lock_all_rqs();
+ /*
+ * Set up the relative cache distance of each online cpu from each
+ * other in a simple array for quick lookup. Locality is determined
+ * by the closest sched_domain that CPUs are separated by. CPUs with
+ * shared cache in SMT and MC are treated as local. Separate CPUs
+ * (within the same package or physically) within the same node are
+ * treated as not local. CPUs not even in the same domain (different
+ * nodes) are treated as very distant.
+ */
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+
+ /* First check if this cpu is in the same node */
+ for_each_domain(cpu, sd) {
+ if (sd->level > SD_LV_MC)
+ continue;
+ if (rqshare != RQSHARE_ALL)
+ leader = NULL;
+ /* Set locality to local node if not already found lower */
+ for_each_cpu(other_cpu, sched_domain_span(sd)) {
+ if (rqshare >= RQSHARE_SMP) {
+ other_rq = cpu_rq(other_cpu);
+
+ /* Set the smp_leader to the first CPU */
+ if (!leader)
+ leader = rq;
+ other_rq->smp_leader = leader;
+ }
+
+ if (rq->cpu_locality[other_cpu] > 3)
+ rq->cpu_locality[other_cpu] = 3;
+ }
+ }
+
+ /*
+ * Each runqueue has its own function in case it doesn't have
+ * siblings of its own allowing mixed topologies.
+ */
+#ifdef CONFIG_SCHED_MC
+ leader = NULL;
+ if (cpumask_weight(core_cpumask(cpu)) > 1) {
+ cpumask_copy(&rq->core_mask, core_cpumask(cpu));
+ cpumask_clear_cpu(cpu, &rq->core_mask);
+ for_each_cpu(other_cpu, core_cpumask(cpu)) {
+ if (rqshare == RQSHARE_MC) {
+ other_rq = cpu_rq(other_cpu);
+
+ /* Set the mc_leader to the first CPU */
+ if (!leader)
+ leader = rq;
+ other_rq->mc_leader = leader;
+ }
+ if (rq->cpu_locality[other_cpu] > 2)
+ rq->cpu_locality[other_cpu] = 2;
+ }
+ rq->cache_idle = cache_cpu_idle;
+ }
+#endif
+#ifdef CONFIG_SCHED_SMT
+ leader = NULL;
+ if (cpumask_weight(thread_cpumask(cpu)) > 1) {
+ cpumask_copy(&rq->thread_mask, thread_cpumask(cpu));
+ cpumask_clear_cpu(cpu, &rq->thread_mask);
+ for_each_cpu(other_cpu, thread_cpumask(cpu)) {
+ if (rqshare == RQSHARE_SMT) {
+ other_rq = cpu_rq(other_cpu);
+
+ /* Set the smt_leader to the first CPU */
+ if (!leader)
+ leader = rq;
+ other_rq->smt_leader = leader;
+ }
+ if (rq->cpu_locality[other_cpu] > 1)
+ rq->cpu_locality[other_cpu] = 1;
+ }
+ rq->siblings_idle = siblings_cpu_idle;
+ smt_threads = true;
+ }
+#endif
+ }
+
+#ifdef CONFIG_SMT_NICE
+ if (smt_threads) {
+ check_siblings = &check_smt_siblings;
+ wake_siblings = &wake_smt_siblings;
+ smt_schedule = &smt_should_schedule;
+ }
+#endif
+ unlock_all_rqs();
+ mutex_unlock(&sched_domains_mutex);
+
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+
+ for_each_online_cpu(other_cpu) {
+ if (other_cpu <= cpu)
+ continue;
+ printk(KERN_DEBUG "MuQSS locality CPU %d to %d: %d\n", cpu, other_cpu, rq->cpu_locality[other_cpu]);
+ }
+ }
+
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+ leader = rq->smp_leader;
+
+ rq_lock(rq);
+ if (leader && rq != leader) {
+ printk(KERN_INFO "Sharing SMP runqueue from CPU %d to CPU %d\n",
+ leader->cpu, rq->cpu);
+ kfree(rq->node);
+ kfree(rq->sl);
+ kfree(rq->lock);
+ rq->node = leader->node;
+ rq->sl = leader->sl;
+ rq->lock = leader->lock;
+ barrier();
+ /* To make up for not unlocking the freed runlock */
+ preempt_enable();
+ } else
+ rq_unlock(rq);
+ }
+
+#ifdef CONFIG_SCHED_MC
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+ leader = rq->mc_leader;
+
+ rq_lock(rq);
+ if (leader && rq != leader) {
+ printk(KERN_INFO "Sharing MC runqueue from CPU %d to CPU %d\n",
+ leader->cpu, rq->cpu);
+ kfree(rq->node);
+ kfree(rq->sl);
+ kfree(rq->lock);
+ rq->node = leader->node;
+ rq->sl = leader->sl;
+ rq->lock = leader->lock;
+ barrier();
+ /* To make up for not unlocking the freed runlock */
+ preempt_enable();
+ } else
+ rq_unlock(rq);
+ }
+#endif /* CONFIG_SCHED_MC */
+
+#ifdef CONFIG_SCHED_SMT
+ for_each_online_cpu(cpu) {
+ rq = cpu_rq(cpu);
+
+ leader = rq->smt_leader;
+
+ rq_lock(rq);
+ if (leader && rq != leader) {
+ printk(KERN_INFO "Sharing SMT runqueue from CPU %d to CPU %d\n",
+ leader->cpu, rq->cpu);
+ kfree(rq->node);
+ kfree(rq->sl);
+ kfree(rq->lock);
+ rq->node = leader->node;
+ rq->sl = leader->sl;
+ rq->lock = leader->lock;
+ barrier();
+ /* To make up for not unlocking the freed runlock */
+ preempt_enable();
+ } else
+ rq_unlock(rq);
+ }
+#endif /* CONFIG_SCHED_SMT */
+
+ local_irq_enable();
+
+ total_runqueues = 0;
+ for_each_possible_cpu(cpu) {
+ int locality, total_rqs = 0, total_cpus = 0;
+
+ rq = cpu_rq(cpu);
+ if (
+#ifdef CONFIG_SCHED_MC
+ (rq->mc_leader == rq) &&
+#endif
+#ifdef CONFIG_SCHED_SMT
+ (rq->smt_leader == rq) &&
+#endif
+ (rq->smp_leader == rq))
+ total_runqueues++;
+
+ for (locality = 0; locality <= 4; locality++) {
+ int test_cpu;
+
+ for_each_possible_cpu(test_cpu) {
+ /* Work from each CPU up instead of every rq
+ * starting at CPU 0. Orders are better matched
+ * if the top half CPUs count down instead. */
+ if (cpu < num_possible_cpus() / 2)
+ other_cpu = cpu + test_cpu;
+ else
+ other_cpu = cpu - test_cpu;
+ if (other_cpu < 0)
+ other_cpu += num_possible_cpus();
+ else
+ other_cpu %= num_possible_cpus();
+ other_rq = cpu_rq(other_cpu);
+
+ if (rq->cpu_locality[other_cpu] == locality) {
+ rq->cpu_order[total_cpus++] = other_rq;
+ if (
+
+#ifdef CONFIG_SCHED_MC
+ (other_rq->mc_leader == other_rq) &&
+#endif
+#ifdef CONFIG_SCHED_SMT
+ (other_rq->smt_leader == other_rq) &&
+#endif
+ (other_rq->smp_leader == other_rq))
+ rq->rq_order[total_rqs++] = other_rq;
+ }
+ }
+ }
+ }
+
+ for_each_possible_cpu(cpu) {
+ rq = cpu_rq(cpu);
+ for (i = 0; i < total_runqueues; i++) {
+ printk(KERN_DEBUG "CPU %d RQ order %d RQ %d\n", cpu, i,
+ rq->rq_order[i]->cpu);
+ }
+ }
+ for_each_possible_cpu(cpu) {
+ rq = cpu_rq(cpu);
+ for (i = 0; i < num_possible_cpus(); i++) {
+ printk(KERN_DEBUG "CPU %d CPU order %d RQ %d\n", cpu, i,
+ rq->cpu_order[i]->cpu);
+ }
+ }
+ switch (rqshare) {
+ case RQSHARE_ALL:
+ /* This should only ever read 1 */
+ printk(KERN_INFO "MuQSS runqueue share type ALL total runqueues: %d\n",
+ total_runqueues);
+ break;
+ case RQSHARE_SMP:
+ printk(KERN_INFO "MuQSS runqueue share type SMP total runqueues: %d\n",
+ total_runqueues);
+ break;
+ case RQSHARE_MC:
+ printk(KERN_INFO "MuQSS runqueue share type MC total runqueues: %d\n",
+ total_runqueues);
+ break;
+ case RQSHARE_SMT:
+ printk(KERN_INFO "MuQSS runqueue share type SMT total runqueues: %d\n",
+ total_runqueues);
+ break;
+ case RQSHARE_NONE:
+ printk(KERN_INFO "MuQSS runqueue share type NONE total runqueues: %d\n",
+ total_runqueues);
+ break;
+ }
+
+ sched_smp_initialized = true;
+}
+#else
+void __init sched_init_smp(void)
+{
+ sched_smp_initialized = true;
+}
+#endif /* CONFIG_SMP */
+
+int in_sched_functions(unsigned long addr)
+{
+ return in_lock_functions(addr) ||
+ (addr >= (unsigned long)__sched_text_start
+ && addr < (unsigned long)__sched_text_end);
+}
+
+#ifdef CONFIG_CGROUP_SCHED
+/* task group related information */
+struct task_group {
+ struct cgroup_subsys_state css;
+
+ struct rcu_head rcu;
+ struct list_head list;
+
+ struct task_group *parent;
+ struct list_head siblings;
+ struct list_head children;
+};
+
+/*
+ * Default task group.
+ * Every task in system belongs to this group at bootup.
+ */
+struct task_group root_task_group;
+LIST_HEAD(task_groups);
+
+/* Cacheline aligned slab cache for task_group */
+static struct kmem_cache *task_group_cache __read_mostly;
+#endif /* CONFIG_CGROUP_SCHED */
+
+void __init sched_init(void)
+{
+#ifdef CONFIG_SMP
+ int cpu_ids;
+#endif
+ int i;
+ struct rq *rq;
+
+ wait_bit_init();
+
+ prio_ratios[0] = 128;
+ for (i = 1 ; i < NICE_WIDTH ; i++)
+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
+
+ skiplist_node_init(&init_task.node);
+
+#ifdef CONFIG_SMP
+ init_defrootdomain();
+ cpumask_clear(&cpu_idle_map);
+#else
+ uprq = &per_cpu(runqueues, 0);
+#endif
+
+#ifdef CONFIG_CGROUP_SCHED
+ task_group_cache = KMEM_CACHE(task_group, 0);
+
+ list_add(&root_task_group.list, &task_groups);
+ INIT_LIST_HEAD(&root_task_group.children);
+ INIT_LIST_HEAD(&root_task_group.siblings);
+#endif /* CONFIG_CGROUP_SCHED */
+ for_each_possible_cpu(i) {
+ rq = cpu_rq(i);
+ rq->node = kmalloc(sizeof(skiplist_node), GFP_ATOMIC);
+ skiplist_init(rq->node);
+ rq->sl = new_skiplist(rq->node);
+ rq->lock = kmalloc(sizeof(raw_spinlock_t), GFP_ATOMIC);
+ raw_spin_lock_init(rq->lock);
+ rq->nr_running = 0;
+ rq->nr_uninterruptible = 0;
+ rq->nr_switches = 0;
+ rq->clock = rq->old_clock = rq->last_niffy = rq->niffies = 0;
+ rq->last_jiffy = jiffies;
+ rq->user_ns = rq->nice_ns = rq->softirq_ns = rq->system_ns =
+ rq->iowait_ns = rq->idle_ns = 0;
+ rq->dither = 0;
+ set_rq_task(rq, &init_task);
+ rq->iso_ticks = 0;
+ rq->iso_refractory = false;
+#ifdef CONFIG_SMP
+ rq->smp_leader = rq;
+#ifdef CONFIG_SCHED_MC
+ rq->mc_leader = rq;
+#endif
+#ifdef CONFIG_SCHED_SMT
+ rq->smt_leader = rq;
+#endif
+ rq->sd = NULL;
+ rq->rd = NULL;
+ rq->online = false;
+ rq->cpu = i;
+ rq_attach_root(rq, &def_root_domain);
+#endif
+ init_rq_hrexpiry(rq);
+ atomic_set(&rq->nr_iowait, 0);
+ }
+
+#ifdef CONFIG_SMP
+ cpu_ids = i;
+ /*
+ * Set the base locality for cpu cache distance calculation to
+ * "distant" (3). Make sure the distance from a CPU to itself is 0.
+ */
+ for_each_possible_cpu(i) {
+ int j;
+
+ rq = cpu_rq(i);
+#ifdef CONFIG_SCHED_SMT
+ rq->siblings_idle = sole_cpu_idle;
+#endif
+#ifdef CONFIG_SCHED_MC
+ rq->cache_idle = sole_cpu_idle;
+#endif
+ rq->cpu_locality = kmalloc(cpu_ids * sizeof(int *), GFP_ATOMIC);
+ for_each_possible_cpu(j) {
+ if (i == j)
+ rq->cpu_locality[j] = 0;
+ else
+ rq->cpu_locality[j] = 4;
+ }
+ rq->rq_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
+ rq->cpu_order = kmalloc(cpu_ids * sizeof(struct rq *), GFP_ATOMIC);
+ rq->rq_order[0] = rq->cpu_order[0] = rq;
+ for (j = 1; j < cpu_ids; j++)
+ rq->rq_order[j] = rq->cpu_order[j] = cpu_rq(j);
+ }
+#endif
+
+ /*
+ * The boot idle thread does lazy MMU switching as well:
+ */
+ mmgrab(&init_mm);
+ enter_lazy_tlb(&init_mm, current);
+
+ /*
+ * Make us the idle thread. Technically, schedule() should not be
+ * called from this thread, however somewhere below it might be,
+ * but because we are the idle thread, we just pick up running again
+ * when this runqueue becomes "idle".
+ */
+ init_idle(current, smp_processor_id());
+
+#ifdef CONFIG_SMP
+ idle_thread_set_boot_cpu();
+#endif /* SMP */
+
+ init_schedstats();
+
+ psi_init();
+}
+
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+static inline int preempt_count_equals(int preempt_offset)
+{
+ int nested = preempt_count() + rcu_preempt_depth();
+
+ return (nested == preempt_offset);
+}
+
+void __might_sleep(const char *file, int line, int preempt_offset)
+{
+ /*
+ * Blocking primitives will set (and therefore destroy) current->state,
+ * since we will exit with TASK_RUNNING make sure we enter with it,
+ * otherwise we will destroy state.
+ */
+ WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
+ "do not call blocking ops when !TASK_RUNNING; "
+ "state=%lx set at [<%p>] %pS\n",
+ current->state,
+ (void *)current->task_state_change,
+ (void *)current->task_state_change);
+
+ ___might_sleep(file, line, preempt_offset);
+}
+EXPORT_SYMBOL(__might_sleep);
+
+void __cant_sleep(const char *file, int line, int preempt_offset)
+{
+ static unsigned long prev_jiffy;
+
+ if (irqs_disabled())
+ return;
+
+ if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
+ return;
+
+ if (preempt_count() > preempt_offset)
+ return;
+
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
+ return;
+ prev_jiffy = jiffies;
+
+ printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
+ printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
+ in_atomic(), irqs_disabled(),
+ current->pid, current->comm);
+
+ debug_show_held_locks(current);
+ dump_stack();
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
+}
+EXPORT_SYMBOL_GPL(__cant_sleep);
+
+void ___might_sleep(const char *file, int line, int preempt_offset)
+{
+ /* Ratelimiting timestamp: */
+ static unsigned long prev_jiffy;
+
+ unsigned long preempt_disable_ip;
+
+ /* WARN_ON_ONCE() by default, no rate limit required: */
+ rcu_sleep_check();
+
+ if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
+ !is_idle_task(current)) ||
+ system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
+ oops_in_progress)
+ return;
+
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
+ return;
+ prev_jiffy = jiffies;
+
+ /* Save this before calling printk(), since that will clobber it: */
+ preempt_disable_ip = get_preempt_disable_ip(current);
+
+ printk(KERN_ERR
+ "BUG: sleeping function called from invalid context at %s:%d\n",
+ file, line);
+ printk(KERN_ERR
+ "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
+ in_atomic(), irqs_disabled(),
+ current->pid, current->comm);
+
+ if (task_stack_end_corrupted(current))
+ printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
+
+ debug_show_held_locks(current);
+ if (irqs_disabled())
+ print_irqtrace_events(current);
+ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
+ && !preempt_count_equals(preempt_offset)) {
+ pr_err("Preemption disabled at:");
+ print_ip_sym(preempt_disable_ip);
+ pr_cont("\n");
+ }
+ dump_stack();
+ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
+}
+EXPORT_SYMBOL(___might_sleep);
+#endif
+
+#ifdef CONFIG_MAGIC_SYSRQ
+static inline void normalise_rt_tasks(void)
+{
+ struct task_struct *g, *p;
+ struct rq_flags rf;
+ struct rq *rq;
+
+ read_lock(&tasklist_lock);
+ for_each_process_thread(g, p) {
+ /*
+ * Only normalize user tasks:
+ */
+ if (p->flags & PF_KTHREAD)
+ continue;
+
+ if (!rt_task(p) && !iso_task(p))
+ continue;
+
+ rq = task_rq_lock(p, &rf);
+ __setscheduler(p, rq, SCHED_NORMAL, 0, false);
+ task_rq_unlock(rq, p, &rf);
+ }
+ read_unlock(&tasklist_lock);
+}
+
+void normalize_rt_tasks(void)
+{
+ normalise_rt_tasks();
+}
+#endif /* CONFIG_MAGIC_SYSRQ */
+
+#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
+/*
+ * These functions are only useful for the IA64 MCA handling, or kdb.
+ *
+ * They can only be called when the whole system has been
+ * stopped - every CPU needs to be quiescent, and no scheduling
+ * activity can take place. Using them for anything else would
+ * be a serious bug, and as a result, they aren't even visible
+ * under any other configuration.
+ */
+
+/**
+ * curr_task - return the current task for a given CPU.
+ * @cpu: the processor in question.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ *
+ * Return: The current task for @cpu.
+ */
+struct task_struct *curr_task(int cpu)
+{
+ return cpu_curr(cpu);
+}
+
+#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
+
+#ifdef CONFIG_IA64
+/**
+ * set_curr_task - set the current task for a given CPU.
+ * @cpu: the processor in question.
+ * @p: the task pointer to set.
+ *
+ * Description: This function must only be used when non-maskable interrupts
+ * are serviced on a separate stack. It allows the architecture to switch the
+ * notion of the current task on a CPU in a non-blocking manner. This function
+ * must be called with all CPU's synchronised, and interrupts disabled, the
+ * and caller must save the original value of the current task (see
+ * curr_task() above) and restore that value before reenabling interrupts and
+ * re-starting the system.
+ *
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
+ */
+void ia64_set_curr_task(int cpu, struct task_struct *p)
+{
+ cpu_curr(cpu) = p;
+}
+
+#endif
+
+void init_idle_bootup_task(struct task_struct *idle)
+{}
+
+#ifdef CONFIG_SCHED_DEBUG
+__read_mostly bool sched_debug_enabled;
+
+void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
+ struct seq_file *m)
+{}
+
+void proc_sched_set_task(struct task_struct *p)
+{}
+#endif
+
+#ifdef CONFIG_CGROUP_SCHED
+static void sched_free_group(struct task_group *tg)
+{
+ kmem_cache_free(task_group_cache, tg);
+}
+
+/* allocate runqueue etc for a new task group */
+struct task_group *sched_create_group(struct task_group *parent)
+{
+ struct task_group *tg;
+
+ tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
+ if (!tg)
+ return ERR_PTR(-ENOMEM);
+
+ return tg;
+}
+
+void sched_online_group(struct task_group *tg, struct task_group *parent)
+{
+}
+
+/* rcu callback to free various structures associated with a task group */
+static void sched_free_group_rcu(struct rcu_head *rhp)
+{
+ /* Now it should be safe to free those cfs_rqs */
+ sched_free_group(container_of(rhp, struct task_group, rcu));
+}
+
+void sched_destroy_group(struct task_group *tg)
+{
+ /* Wait for possible concurrent references to cfs_rqs complete */
+ call_rcu(&tg->rcu, sched_free_group_rcu);
+}
+
+void sched_offline_group(struct task_group *tg)
+{
+}
+
+static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
+{
+ return css ? container_of(css, struct task_group, css) : NULL;
+}
+
+static struct cgroup_subsys_state *
+cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+ struct task_group *parent = css_tg(parent_css);
+ struct task_group *tg;
+
+ if (!parent) {
+ /* This is early initialization for the top cgroup */
+ return &root_task_group.css;
+ }
+
+ tg = sched_create_group(parent);
+ if (IS_ERR(tg))
+ return ERR_PTR(-ENOMEM);
+ return &tg->css;
+}
+
+/* Expose task group only after completing cgroup initialization */
+static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+ struct task_group *parent = css_tg(css->parent);
+
+ if (parent)
+ sched_online_group(tg, parent);
+ return 0;
+}
+
+static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+
+ sched_offline_group(tg);
+}
+
+static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+
+ /*
+ * Relies on the RCU grace period between css_released() and this.
+ */
+ sched_free_group(tg);
+}
+
+static void cpu_cgroup_fork(struct task_struct *task)
+{
+}
+
+static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
+{
+ return 0;
+}
+
+static void cpu_cgroup_attach(struct cgroup_taskset *tset)
+{
+}
+
+static struct cftype cpu_legacy_files[] = {
+ { } /* Terminate */
+};
+
+static struct cftype cpu_files[] = {
+ { } /* terminate */
+};
+
+static int cpu_extra_stat_show(struct seq_file *sf,
+ struct cgroup_subsys_state *css)
+{
+ return 0;
+}
+
+struct cgroup_subsys cpu_cgrp_subsys = {
+ .css_alloc = cpu_cgroup_css_alloc,
+ .css_online = cpu_cgroup_css_online,
+ .css_released = cpu_cgroup_css_released,
+ .css_free = cpu_cgroup_css_free,
+ .css_extra_stat_show = cpu_extra_stat_show,
+ .fork = cpu_cgroup_fork,
+ .can_attach = cpu_cgroup_can_attach,
+ .attach = cpu_cgroup_attach,
+ .legacy_cftypes = cpu_files,
+ .legacy_cftypes = cpu_legacy_files,
+ .dfl_cftypes = cpu_files,
+ .early_init = true,
+ .threaded = true,
+};
+#endif /* CONFIG_CGROUP_SCHED */
+
+#undef CREATE_TRACE_POINTS
diff --git a/kernel/sched/MuQSS.h b/kernel/sched/MuQSS.h
new file mode 100644
index 000000000000..0237ac382643
--- /dev/null
+++ b/kernel/sched/MuQSS.h
@@ -0,0 +1,957 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef MUQSS_SCHED_H
+#define MUQSS_SCHED_H
+
+#include <linux/sched/clock.h>
+#include <linux/sched/cpufreq.h>
+#include <linux/sched/cputime.h>
+#include <linux/sched/debug.h>
+#include <linux/sched/hotplug.h>
+#include <linux/sched/init.h>
+#include <linux/sched/isolation.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/nohz.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/smt.h>
+#include <linux/sched/stat.h>
+#include <linux/sched/task.h>
+#include <linux/sched/task_stack.h>
+#include <linux/sched/topology.h>
+#include <linux/sched/wake_q.h>
+
+#include <uapi/linux/sched/types.h>
+
+#include <linux/cgroup.h>
+#include <linux/cpufreq.h>
+#include <linux/cpuidle.h>
+#include <linux/cpuset.h>
+#include <linux/ctype.h>
+#include <linux/energy_model.h>
+#include <linux/freezer.h>
+#include <linux/interrupt.h>
+#include <linux/kernel_stat.h>
+#include <linux/kthread.h>
+#include <linux/membarrier.h>
+#include <linux/livepatch.h>
+#include <linux/proc_fs.h>
+#include <linux/psi.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/skip_list.h>
+#include <linux/stop_machine.h>
+#include <linux/suspend.h>
+#include <linux/swait.h>
+#include <linux/syscalls.h>
+#include <linux/tick.h>
+#include <linux/tsacct_kern.h>
+#include <linux/u64_stats_sync.h>
+
+#ifdef CONFIG_PARAVIRT
+#include <asm/paravirt.h>
+#endif
+
+#include "cpupri.h"
+
+#ifdef CONFIG_SCHED_DEBUG
+# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
+#else
+# define SCHED_WARN_ON(x) ((void)(x))
+#endif
+
+/* task_struct::on_rq states: */
+#define TASK_ON_RQ_QUEUED 1
+#define TASK_ON_RQ_MIGRATING 2
+
+struct rq;
+
+#ifdef CONFIG_SMP
+
+static inline bool sched_asym_prefer(int a, int b)
+{
+ return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
+}
+
+struct perf_domain {
+ struct em_perf_domain *em_pd;
+ struct perf_domain *next;
+ struct rcu_head rcu;
+};
+
+/* Scheduling group status flags */
+#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
+#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
+
+/*
+ * We add the notion of a root-domain which will be used to define per-domain
+ * variables. Each exclusive cpuset essentially defines an island domain by
+ * fully partitioning the member cpus from any other cpuset. Whenever a new
+ * exclusive cpuset is created, we also create and attach a new root-domain
+ * object.
+ *
+ */
+struct root_domain {
+ atomic_t refcount;
+ atomic_t rto_count;
+ struct rcu_head rcu;
+ cpumask_var_t span;
+ cpumask_var_t online;
+
+ /*
+ * Indicate pullable load on at least one CPU, e.g:
+ * - More than one runnable task
+ * - Running task is misfit
+ */
+ int overload;
+
+ /* Indicate one or more cpus over-utilized (tipping point) */
+ int overutilized;
+
+ /*
+ * The bit corresponding to a CPU gets set here if such CPU has more
+ * than one runnable -deadline task (as it is below for RT tasks).
+ */
+ cpumask_var_t dlo_mask;
+ atomic_t dlo_count;
+ /* Replace unused CFS structures with void */
+ //struct dl_bw dl_bw;
+ //struct cpudl cpudl;
+ void *dl_bw;
+ void *cpudl;
+
+ /*
+ * The "RT overload" flag: it gets set if a CPU has more than
+ * one runnable RT task.
+ */
+ cpumask_var_t rto_mask;
+ //struct cpupri cpupri;
+ void *cpupri;
+
+ unsigned long max_cpu_capacity;
+
+ /*
+ * NULL-terminated list of performance domains intersecting with the
+ * CPUs of the rd. Protected by RCU.
+ */
+ struct perf_domain *pd;
+};
+
+extern struct root_domain def_root_domain;
+extern struct mutex sched_domains_mutex;
+
+extern void init_defrootdomain(void);
+extern int sched_init_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
+
+static inline void cpupri_cleanup(void __maybe_unused *cpupri)
+{
+}
+
+static inline void cpudl_cleanup(void __maybe_unused *cpudl)
+{
+}
+
+static inline void init_dl_bw(void __maybe_unused *dl_bw)
+{
+}
+
+static inline int cpudl_init(void __maybe_unused *dl_bw)
+{
+ return 0;
+}
+
+static inline int cpupri_init(void __maybe_unused *cpupri)
+{
+ return 0;
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ * This data should only be modified by the local cpu.
+ */
+struct rq {
+ raw_spinlock_t *lock;
+ raw_spinlock_t *orig_lock;
+
+ struct task_struct *curr, *idle, *stop;
+ struct mm_struct *prev_mm;
+
+ unsigned int nr_running;
+ /*
+ * This is part of a global counter where only the total sum
+ * over all CPUs matters. A task can increase this counter on
+ * one CPU and if it got migrated afterwards it may decrease
+ * it on another CPU. Always updated under the runqueue lock:
+ */
+ unsigned long nr_uninterruptible;
+ u64 nr_switches;
+
+ /* Stored data about rq->curr to work outside rq lock */
+ u64 rq_deadline;
+ int rq_prio;
+
+ /* Best queued id for use outside lock */
+ u64 best_key;
+
+ unsigned long last_scheduler_tick; /* Last jiffy this RQ ticked */
+ unsigned long last_jiffy; /* Last jiffy this RQ updated rq clock */
+ u64 niffies; /* Last time this RQ updated rq clock */
+ u64 last_niffy; /* Last niffies as updated by local clock */
+ u64 last_jiffy_niffies; /* Niffies @ last_jiffy */
+
+ u64 load_update; /* When we last updated load */
+ unsigned long load_avg; /* Rolling load average */
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+ u64 irq_load_update; /* When we last updated IRQ load */
+ unsigned long irq_load_avg; /* Rolling IRQ load average */
+#endif
+#ifdef CONFIG_SMT_NICE
+ struct mm_struct *rq_mm;
+ int rq_smt_bias; /* Policy/nice level bias across smt siblings */
+#endif
+ /* Accurate timekeeping data */
+ unsigned long user_ns, nice_ns, irq_ns, softirq_ns, system_ns,
+ iowait_ns, idle_ns;
+ atomic_t nr_iowait;
+
+ skiplist_node *node;
+ skiplist *sl;
+#ifdef CONFIG_SMP
+ struct task_struct *preempt; /* Preempt triggered on this task */
+ struct task_struct *preempting; /* Hint only, what task is preempting */
+
+ int cpu; /* cpu of this runqueue */
+ bool online;
+
+ struct root_domain *rd;
+ struct sched_domain *sd;
+
+ unsigned long cpu_capacity_orig;
+
+ int *cpu_locality; /* CPU relative cache distance */
+ struct rq **rq_order; /* Shared RQs ordered by relative cache distance */
+ struct rq **cpu_order; /* RQs of discrete CPUs ordered by distance */
+
+ struct rq *smp_leader; /* First physical CPU per node */
+#ifdef CONFIG_SCHED_SMT
+ struct rq *smt_leader; /* First logical CPU in SMT siblings */
+ cpumask_t thread_mask;
+ bool (*siblings_idle)(struct rq *rq);
+ /* See if all smt siblings are idle */
+#endif /* CONFIG_SCHED_SMT */
+#ifdef CONFIG_SCHED_MC
+ struct rq *mc_leader; /* First logical CPU in MC siblings */
+ cpumask_t core_mask;
+ bool (*cache_idle)(struct rq *rq);
+ /* See if all cache siblings are idle */
+#endif /* CONFIG_SCHED_MC */
+#endif /* CONFIG_SMP */
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ u64 prev_irq_time;
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+#ifdef CONFIG_PARAVIRT
+ u64 prev_steal_time;
+#endif /* CONFIG_PARAVIRT */
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+ u64 prev_steal_time_rq;
+#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
+
+ u64 clock, old_clock, last_tick;
+ /* Ensure that all clocks are in the same cache line */
+ u64 clock_task ____cacheline_aligned;
+ int dither;
+
+ int iso_ticks;
+ bool iso_refractory;
+
+#ifdef CONFIG_HIGH_RES_TIMERS
+ struct hrtimer hrexpiry_timer;
+#endif
+
+ int rt_nr_running; /* Number real time tasks running */
+#ifdef CONFIG_SCHEDSTATS
+
+ /* latency stats */
+ struct sched_info rq_sched_info;
+ unsigned long long rq_cpu_time;
+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
+
+ /* sys_sched_yield() stats */
+ unsigned int yld_count;
+
+ /* schedule() stats */
+ unsigned int sched_switch;
+ unsigned int sched_count;
+ unsigned int sched_goidle;
+
+ /* try_to_wake_up() stats */
+ unsigned int ttwu_count;
+ unsigned int ttwu_local;
+#endif /* CONFIG_SCHEDSTATS */
+
+#ifdef CONFIG_SMP
+ struct llist_head wake_list;
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+ /* Must be inspected within a rcu lock section */
+ struct cpuidle_state *idle_state;
+#endif
+};
+
+struct rq_flags {
+ unsigned long flags;
+};
+
+#ifdef CONFIG_SMP
+struct rq *cpu_rq(int cpu);
+#endif
+
+#ifndef CONFIG_SMP
+extern struct rq *uprq;
+#define cpu_rq(cpu) (uprq)
+#define this_rq() (uprq)
+#define raw_rq() (uprq)
+#define task_rq(p) (uprq)
+#define cpu_curr(cpu) ((uprq)->curr)
+#else /* CONFIG_SMP */
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+#define this_rq() this_cpu_ptr(&runqueues)
+#define raw_rq() raw_cpu_ptr(&runqueues)
+#define task_rq(p) cpu_rq(task_cpu(p))
+#endif /* CONFIG_SMP */
+
+static inline int task_current(struct rq *rq, struct task_struct *p)
+{
+ return rq->curr == p;
+}
+
+static inline int task_running(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+ return p->on_cpu;
+#else
+ return task_current(rq, p);
+#endif
+}
+
+static inline int task_on_rq_queued(struct task_struct *p)
+{
+ return p->on_rq == TASK_ON_RQ_QUEUED;
+}
+
+static inline int task_on_rq_migrating(struct task_struct *p)
+{
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
+}
+
+static inline void rq_lock(struct rq *rq)
+ __acquires(rq->lock)
+{
+ raw_spin_lock(rq->lock);
+}
+
+static inline void rq_unlock(struct rq *rq)
+ __releases(rq->lock)
+{
+ raw_spin_unlock(rq->lock);
+}
+
+static inline void rq_lock_irq(struct rq *rq)
+ __acquires(rq->lock)
+{
+ raw_spin_lock_irq(rq->lock);
+}
+
+static inline void rq_unlock_irq(struct rq *rq, struct rq_flags __always_unused *rf)
+ __releases(rq->lock)
+{
+ raw_spin_unlock_irq(rq->lock);
+}
+
+static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
+ __acquires(rq->lock)
+{
+ raw_spin_lock_irqsave(rq->lock, rf->flags);
+}
+
+static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
+ __releases(rq->lock)
+{
+ raw_spin_unlock_irqrestore(rq->lock, rf->flags);
+}
+
+static inline struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+ __acquires(p->pi_lock)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ while (42) {
+ raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
+ rq = task_rq(p);
+ raw_spin_lock(rq->lock);
+ if (likely(rq == task_rq(p)))
+ break;
+ raw_spin_unlock(rq->lock);
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
+ }
+ return rq;
+}
+
+static inline void task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+ __releases(rq->lock)
+ __releases(p->pi_lock)
+{
+ rq_unlock(rq);
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
+}
+
+static inline struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags __always_unused *rf)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ lockdep_assert_held(&p->pi_lock);
+
+ while (42) {
+ rq = task_rq(p);
+ raw_spin_lock(rq->lock);
+ if (likely(rq == task_rq(p)))
+ break;
+ raw_spin_unlock(rq->lock);
+ }
+ return rq;
+}
+
+static inline void __task_rq_unlock(struct rq *rq, struct rq_flags __always_unused *rf)
+{
+ rq_unlock(rq);
+}
+
+static inline struct rq *
+this_rq_lock_irq(struct rq_flags *rf)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ local_irq_disable();
+ rq = this_rq();
+ rq_lock(rq);
+ return rq;
+}
+
+/*
+ * {de,en}queue flags: Most not used on MuQSS.
+ *
+ * DEQUEUE_SLEEP - task is no longer runnable
+ * ENQUEUE_WAKEUP - task just became runnable
+ *
+ * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
+ * are in a known state which allows modification. Such pairs
+ * should preserve as much state as possible.
+ *
+ * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
+ * in the runqueue.
+ *
+ * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
+ * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
+ * ENQUEUE_MIGRATED - the task was migrated during wakeup
+ *
+ */
+
+#define DEQUEUE_SLEEP 0x01
+#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
+
+#define ENQUEUE_WAKEUP 0x01
+#define ENQUEUE_RESTORE 0x02
+
+#ifdef CONFIG_SMP
+#define ENQUEUE_MIGRATED 0x40
+#else
+#define ENQUEUE_MIGRATED 0x00
+#endif
+
+static inline u64 __rq_clock_broken(struct rq *rq)
+{
+ return READ_ONCE(rq->clock);
+}
+
+static inline u64 rq_clock(struct rq *rq)
+{
+ lockdep_assert_held(rq->lock);
+
+ return rq->clock;
+}
+
+static inline u64 rq_clock_task(struct rq *rq)
+{
+ lockdep_assert_held(rq->lock);
+
+ return rq->clock_task;
+}
+
+#ifdef CONFIG_NUMA
+enum numa_topology_type {
+ NUMA_DIRECT,
+ NUMA_GLUELESS_MESH,
+ NUMA_BACKPLANE,
+};
+extern enum numa_topology_type sched_numa_topology_type;
+extern int sched_max_numa_distance;
+extern bool find_numa_distance(int distance);
+
+extern void sched_init_numa(void);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+#else
+static inline void sched_init_numa(void) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+#endif
+
+extern struct mutex sched_domains_mutex;
+extern struct static_key_false sched_schedstats;
+
+#define rcu_dereference_check_sched_domain(p) \
+ rcu_dereference_check((p), \
+ lockdep_is_held(&sched_domains_mutex))
+
+#ifdef CONFIG_SMP
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See destroy_sched_domains: call_rcu for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
+ __sd; __sd = __sd->parent)
+
+#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
+
+/**
+ * highest_flag_domain - Return highest sched_domain containing flag.
+ * @cpu: The cpu whose highest level of sched domain is to
+ * be returned.
+ * @flag: The flag to check for the highest sched_domain
+ * for the given cpu.
+ *
+ * Returns the highest sched_domain of a cpu which contains the given flag.
+ */
+static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd, *hsd = NULL;
+
+ for_each_domain(cpu, sd) {
+ if (!(sd->flags & flag))
+ break;
+ hsd = sd;
+ }
+
+ return hsd;
+}
+
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd;
+
+ for_each_domain(cpu, sd) {
+ if (sd->flags & flag)
+ break;
+ }
+
+ return sd;
+}
+
+DECLARE_PER_CPU(struct sched_domain *, sd_llc);
+DECLARE_PER_CPU(int, sd_llc_size);
+DECLARE_PER_CPU(int, sd_llc_id);
+DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
+DECLARE_PER_CPU(struct sched_domain *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
+DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
+
+struct sched_group_capacity {
+ atomic_t ref;
+ /*
+ * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
+ * for a single CPU.
+ */
+ unsigned long capacity;
+ unsigned long min_capacity; /* Min per-CPU capacity in group */
+ unsigned long max_capacity; /* Max per-CPU capacity in group */
+ unsigned long next_update;
+ int imbalance; /* XXX unrelated to capacity but shared group state */
+
+#ifdef CONFIG_SCHED_DEBUG
+ int id;
+#endif
+
+ unsigned long cpumask[0]; /* balance mask */
+};
+
+struct sched_group {
+ struct sched_group *next; /* Must be a circular list */
+ atomic_t ref;
+
+ unsigned int group_weight;
+ struct sched_group_capacity *sgc;
+ int asym_prefer_cpu; /* cpu of highest priority in group */
+
+ /*
+ * The CPUs this group covers.
+ *
+ * NOTE: this field is variable length. (Allocated dynamically
+ * by attaching extra space to the end of the structure,
+ * depending on how many CPUs the kernel has booted up with)
+ */
+ unsigned long cpumask[0];
+};
+
+static inline struct cpumask *sched_group_span(struct sched_group *sg)
+{
+ return to_cpumask(sg->cpumask);
+}
+
+/*
+ * See build_balance_mask().
+ */
+static inline struct cpumask *group_balance_mask(struct sched_group *sg)
+{
+ return to_cpumask(sg->sgc->cpumask);
+}
+
+/**
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
+ * @group: The group whose first cpu is to be returned.
+ */
+static inline unsigned int group_first_cpu(struct sched_group *group)
+{
+ return cpumask_first(sched_group_span(group));
+}
+
+
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
+void register_sched_domain_sysctl(void);
+void dirty_sched_domain_sysctl(int cpu);
+void unregister_sched_domain_sysctl(void);
+#else
+static inline void register_sched_domain_sysctl(void)
+{
+}
+static inline void dirty_sched_domain_sysctl(int cpu)
+{
+}
+static inline void unregister_sched_domain_sysctl(void)
+{
+}
+#endif
+
+extern void sched_ttwu_pending(void);
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
+static inline void update_group_capacity(struct sched_domain *sd, int cpu)
+{
+}
+
+static inline void trigger_load_balance(struct rq *rq)
+{
+}
+
+#define sched_feat(x) 0
+
+#else /* CONFIG_SMP */
+
+static inline void sched_ttwu_pending(void) { }
+
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_CPU_IDLE
+static inline void idle_set_state(struct rq *rq,
+ struct cpuidle_state *idle_state)
+{
+ rq->idle_state = idle_state;
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+ SCHED_WARN_ON(!rcu_read_lock_held());
+ return rq->idle_state;
+}
+#else
+static inline void idle_set_state(struct rq *rq,
+ struct cpuidle_state *idle_state)
+{
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+ return NULL;
+}
+#endif
+
+#ifdef CONFIG_SCHED_DEBUG
+extern bool sched_debug_enabled;
+#endif
+
+extern void schedule_idle(void);
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+struct irqtime {
+ u64 total;
+ u64 tick_delta;
+ u64 irq_start_time;
+ struct u64_stats_sync sync;
+};
+
+DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
+
+/*
+ * Returns the irqtime minus the softirq time computed by ksoftirqd.
+ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
+ * and never move forward.
+ */
+static inline u64 irq_time_read(int cpu)
+{
+ struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
+ unsigned int seq;
+ u64 total;
+
+ do {
+ seq = __u64_stats_fetch_begin(&irqtime->sync);
+ total = irqtime->total;
+ } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
+
+ return total;
+}
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#ifdef CONFIG_SMP
+static inline int cpu_of(struct rq *rq)
+{
+ return rq->cpu;
+}
+#else /* CONFIG_SMP */
+static inline int cpu_of(struct rq *rq)
+{
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_CPU_FREQ
+DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
+
+static inline void cpufreq_trigger(struct rq *rq, unsigned int flags)
+{
+ struct update_util_data *data;
+
+ data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
+ cpu_of(rq)));
+
+ if (data)
+ data->func(data, rq->niffies, flags);
+}
+#else
+static inline void cpufreq_trigger(struct rq *rq, unsigned int flag)
+{
+}
+#endif /* CONFIG_CPU_FREQ */
+
+#ifdef arch_scale_freq_capacity
+#ifndef arch_scale_freq_invariant
+#define arch_scale_freq_invariant() (true)
+#endif
+#else /* arch_scale_freq_capacity */
+#define arch_scale_freq_invariant() (false)
+#endif
+
+/*
+ * This should only be called when current == rq->idle. Dodgy workaround for
+ * when softirqs are pending and we are in the idle loop. Setting current to
+ * resched will kick us out of the idle loop and the softirqs will be serviced
+ * on our next pass through schedule().
+ */
+static inline bool softirq_pending(int cpu)
+{
+ if (likely(!local_softirq_pending()))
+ return false;
+ set_tsk_need_resched(current);
+ return true;
+}
+
+#ifdef CONFIG_64BIT
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ return tsk_seruntime(t);
+}
+#else
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ struct rq_flags rf;
+ u64 ns;
+ struct rq *rq;
+
+ rq = task_rq_lock(t, &rf);
+ ns = tsk_seruntime(t);
+ task_rq_unlock(rq, t, &rf);
+
+ return ns;
+}
+#endif
+
+#ifndef arch_scale_freq_capacity
+static __always_inline
+unsigned long arch_scale_freq_capacity(int cpu)
+{
+ return SCHED_CAPACITY_SCALE;
+}
+#endif
+
+#ifdef CONFIG_NO_HZ_FULL
+extern bool sched_can_stop_tick(struct rq *rq);
+extern int __init sched_tick_offload_init(void);
+
+/*
+ * Tick may be needed by tasks in the runqueue depending on their policy and
+ * requirements. If tick is needed, lets send the target an IPI to kick it out of
+ * nohz mode if necessary.
+ */
+static inline void sched_update_tick_dependency(struct rq *rq)
+{
+ int cpu;
+
+ if (!tick_nohz_full_enabled())
+ return;
+
+ cpu = cpu_of(rq);
+
+ if (!tick_nohz_full_cpu(cpu))
+ return;
+
+ if (sched_can_stop_tick(rq))
+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
+ else
+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+#else
+static inline int sched_tick_offload_init(void) { return 0; }
+static inline void sched_update_tick_dependency(struct rq *rq) { }
+#endif
+
+#define SCHED_FLAG_SUGOV 0x10000000
+
+static inline bool rt_rq_is_runnable(struct rq *rt_rq)
+{
+ return rt_rq->rt_nr_running;
+}
+
+#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
+/**
+ * enum schedutil_type - CPU utilization type
+ * @FREQUENCY_UTIL: Utilization used to select frequency
+ * @ENERGY_UTIL: Utilization used during energy calculation
+ *
+ * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
+ * need to be aggregated differently depending on the usage made of them. This
+ * enum is used within schedutil_freq_util() to differentiate the types of
+ * utilization expected by the callers, and adjust the aggregation accordingly.
+ */
+enum schedutil_type {
+ FREQUENCY_UTIL,
+ ENERGY_UTIL,
+};
+
+unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
+ unsigned long max, enum schedutil_type type);
+
+static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
+{
+ unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
+
+ return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
+}
+
+static inline unsigned long cpu_bw_dl(struct rq *rq)
+{
+ return 0;
+}
+
+static inline unsigned long cpu_util_dl(struct rq *rq)
+{
+ return 0;
+}
+
+static inline unsigned long cpu_util_cfs(struct rq *rq)
+{
+ unsigned long ret = READ_ONCE(rq->load_avg);
+
+ if (ret > SCHED_CAPACITY_SCALE)
+ ret = SCHED_CAPACITY_SCALE;
+ return ret;
+}
+
+static inline unsigned long cpu_util_rt(struct rq *rq)
+{
+ unsigned long ret = READ_ONCE(rq->rt_nr_running);
+
+ if (ret > SCHED_CAPACITY_SCALE)
+ ret = SCHED_CAPACITY_SCALE;
+ return ret;
+}
+
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+static inline unsigned long cpu_util_irq(struct rq *rq)
+{
+ unsigned long ret = READ_ONCE(rq->irq_load_avg);
+
+ if (ret > SCHED_CAPACITY_SCALE)
+ ret = SCHED_CAPACITY_SCALE;
+ return ret;
+}
+
+static inline
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
+{
+ util *= (max - irq);
+ util /= max;
+
+ return util;
+
+}
+#else
+static inline unsigned long cpu_util_irq(struct rq *rq)
+{
+ return 0;
+}
+
+static inline
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
+{
+ return util;
+}
+#endif
+#endif
+
+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
+
+DECLARE_STATIC_KEY_FALSE(sched_energy_present);
+
+static inline bool sched_energy_enabled(void)
+{
+ return static_branch_unlikely(&sched_energy_present);
+}
+
+#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
+
+#define perf_domain_span(pd) NULL
+static inline bool sched_energy_enabled(void) { return false; }
+
+#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
+#endif /* MUQSS_SCHED_H */
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index 3638d2377e3c..50c673564b92 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -175,6 +175,12 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
return cpufreq_driver_resolve_freq(policy, freq);
}
+#ifdef CONFIG_SCHED_MUQSS
+#define rt_rq_runnable(rq_rt) rt_rq_is_runnable(rq)
+#else
+#define rt_rq_runnable(rq_rt) rt_rq_is_runnable(&rq->rt)
+#endif
+
/*
* This function computes an effective utilization for the given CPU, to be
* used for frequency selection given the linear relation: f = u * f_max.
@@ -201,7 +207,7 @@ unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
unsigned long dl_util, util, irq;
struct rq *rq = cpu_rq(cpu);
- if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
+ if (type == FREQUENCY_UTIL && rt_rq_runnable(rq))
return max;
/*
@@ -635,7 +641,11 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
struct task_struct *thread;
struct sched_attr attr = {
.size = sizeof(struct sched_attr),
+#ifdef CONFIG_SCHED_MUQSS
+ .sched_policy = SCHED_RR,
+#else
.sched_policy = SCHED_DEADLINE,
+#endif
.sched_flags = SCHED_FLAG_SUGOV,
.sched_nice = 0,
.sched_priority = 0,
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
index 7dc20a3232e7..e733a0a53b0a 100644
--- a/kernel/sched/cpupri.h
+++ b/kernel/sched/cpupri.h
@@ -17,9 +17,11 @@ struct cpupri {
int *cpu_to_pri;
};
+#ifndef CONFIG_SCHED_MUQSS
#ifdef CONFIG_SMP
int cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask);
void cpupri_set(struct cpupri *cp, int cpu, int pri);
int cpupri_init(struct cpupri *cp);
void cpupri_cleanup(struct cpupri *cp);
#endif
+#endif
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index ba4a143bdcf3..31f21b389dbe 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -265,26 +265,6 @@ static inline u64 account_other_time(u64 max)
return accounted;
}
-#ifdef CONFIG_64BIT
-static inline u64 read_sum_exec_runtime(struct task_struct *t)
-{
- return t->se.sum_exec_runtime;
-}
-#else
-static u64 read_sum_exec_runtime(struct task_struct *t)
-{
- u64 ns;
- struct rq_flags rf;
- struct rq *rq;
-
- rq = task_rq_lock(t, &rf);
- ns = t->se.sum_exec_runtime;
- task_rq_unlock(rq, t, &rf);
-
- return ns;
-}
-#endif
-
/*
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
* tasks (sum on group iteration) belonging to @tsk's group.
@@ -662,7 +642,7 @@ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime = {
- .sum_exec_runtime = p->se.sum_exec_runtime,
+ .sum_exec_runtime = tsk_seruntime(p),
};
task_cputime(p, &cputime.utime, &cputime.stime);
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index f5516bae0c1b..c14cd1bcdbd0 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -224,6 +224,8 @@ static void cpuidle_idle_call(void)
static void do_idle(void)
{
int cpu = smp_processor_id();
+ bool pending = false;
+
/*
* If the arch has a polling bit, we maintain an invariant:
*
@@ -234,7 +236,10 @@ static void do_idle(void)
*/
__current_set_polling();
- tick_nohz_idle_enter();
+ if (unlikely(softirq_pending(cpu)))
+ pending = true;
+ else
+ tick_nohz_idle_enter();
while (!need_resched()) {
check_pgt_cache();
@@ -272,7 +277,8 @@ static void do_idle(void)
* an IPI to fold the state for us.
*/
preempt_set_need_resched();
- tick_nohz_idle_exit();
+ if (!pending)
+ tick_nohz_idle_exit();
__current_clr_polling();
/*
@@ -353,6 +359,7 @@ void cpu_startup_entry(enum cpuhp_state state)
do_idle();
}
+#ifndef CONFIG_SCHED_MUQSS
/*
* idle-task scheduling class.
*/
@@ -465,3 +472,4 @@ const struct sched_class idle_sched_class = {
.switched_to = switched_to_idle,
.update_curr = update_curr_idle,
};
+#endif /* CONFIG_SCHED_MUQSS */
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index efa686eeff26..225fd2b5e652 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -2,6 +2,19 @@
/*
* Scheduler internal types and methods:
*/
+#ifdef CONFIG_SCHED_MUQSS
+#include "MuQSS.h"
+
+/* Begin compatibility wrappers for MuQSS/CFS differences */
+#define rq_rt_nr_running(rq) ((rq)->rt_nr_running)
+#define rq_h_nr_running(rq) ((rq)->nr_running)
+
+#else /* CONFIG_SCHED_MUQSS */
+
+#define rq_rt_nr_running(rq) ((rq)->rt.rt_nr_running)
+#define rq_h_nr_running(rq) ((rq)->cfs.h_nr_running)
+
+
#include <linux/sched.h>
#include <linux/sched/autogroup.h>
@@ -2341,3 +2354,30 @@ static inline bool sched_energy_enabled(void)
static inline bool sched_energy_enabled(void) { return false; }
#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
+
+/* MuQSS compatibility functions */
+static inline bool softirq_pending(int cpu)
+{
+ return false;
+}
+
+#ifdef CONFIG_64BIT
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ return t->se.sum_exec_runtime;
+}
+#else
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ u64 ns;
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(t, &rf);
+ ns = t->se.sum_exec_runtime;
+ task_rq_unlock(rq, t, &rf);
+
+ return ns;
+}
+#endif
+#endif /* CONFIG_SCHED_MUQSS */
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index ab7f371a3a17..5327c92302a0 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -442,7 +442,11 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
struct root_domain *old_rd = NULL;
unsigned long flags;
+#ifdef CONFIG_SCHED_MUQSS
+ raw_spin_lock_irqsave(rq->lock, flags);
+#else
raw_spin_lock_irqsave(&rq->lock, flags);
+#endif
if (rq->rd) {
old_rd = rq->rd;
@@ -468,7 +472,11 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
set_rq_online(rq);
+#ifdef CONFIG_SCHED_MUQSS
+ raw_spin_unlock_irqrestore(rq->lock, flags);
+#else
raw_spin_unlock_irqrestore(&rq->lock, flags);
+#endif
if (old_rd)
call_rcu(&old_rd->rcu, free_rootdomain);
diff --git a/kernel/skip_list.c b/kernel/skip_list.c
new file mode 100644
index 000000000000..bf5c6e97e139
--- /dev/null
+++ b/kernel/skip_list.c
@@ -0,0 +1,148 @@
+/*
+ Copyright (C) 2011,2016 Con Kolivas.
+
+ Code based on example originally by William Pugh.
+
+Skip Lists are a probabilistic alternative to balanced trees, as
+described in the June 1990 issue of CACM and were invented by
+William Pugh in 1987.
+
+A couple of comments about this implementation:
+The routine randomLevel has been hard-coded to generate random
+levels using p=0.25. It can be easily changed.
+
+The insertion routine has been implemented so as to use the
+dirty hack described in the CACM paper: if a random level is
+generated that is more than the current maximum level, the
+current maximum level plus one is used instead.
+
+Levels start at zero and go up to MaxLevel (which is equal to
+MaxNumberOfLevels-1).
+
+The routines defined in this file are:
+
+init: defines slnode
+
+new_skiplist: returns a new, empty list
+
+randomLevel: Returns a random level based on a u64 random seed passed to it.
+In MuQSS, the "niffy" time is used for this purpose.
+
+insert(l,key, value): inserts the binding (key, value) into l. This operation
+occurs in O(log n) time.
+
+delnode(slnode, l, node): deletes any binding of key from the l based on the
+actual node value. This operation occurs in O(k) time where k is the
+number of levels of the node in question (max 8). The original delete
+function occurred in O(log n) time and involved a search.
+
+MuQSS Notes: In this implementation of skiplists, there are bidirectional
+next/prev pointers and the insert function returns a pointer to the actual
+node the value is stored. The key here is chosen by the scheduler so as to
+sort tasks according to the priority list requirements and is no longer used
+by the scheduler after insertion. The scheduler lookup, however, occurs in
+O(1) time because it is always the first item in the level 0 linked list.
+Since the task struct stores a copy of the node pointer upon skiplist_insert,
+it can also remove it much faster than the original implementation with the
+aid of prev<->next pointer manipulation and no searching.
+
+*/
+
+#include <linux/slab.h>
+#include <linux/skip_list.h>
+
+#define MaxNumberOfLevels 8
+#define MaxLevel (MaxNumberOfLevels - 1)
+
+void skiplist_init(skiplist_node *slnode)
+{
+ int i;
+
+ slnode->key = 0xFFFFFFFFFFFFFFFF;
+ slnode->level = 0;
+ slnode->value = NULL;
+ for (i = 0; i < MaxNumberOfLevels; i++)
+ slnode->next[i] = slnode->prev[i] = slnode;
+}
+
+skiplist *new_skiplist(skiplist_node *slnode)
+{
+ skiplist *l = kzalloc(sizeof(skiplist), GFP_ATOMIC);
+
+ BUG_ON(!l);
+ l->header = slnode;
+ return l;
+}
+
+void free_skiplist(skiplist *l)
+{
+ skiplist_node *p, *q;
+
+ p = l->header;
+ do {
+ q = p->next[0];
+ p->next[0]->prev[0] = q->prev[0];
+ skiplist_node_init(p);
+ p = q;
+ } while (p != l->header);
+ kfree(l);
+}
+
+void skiplist_node_init(skiplist_node *node)
+{
+ memset(node, 0, sizeof(skiplist_node));
+}
+
+static inline unsigned int randomLevel(const long unsigned int randseed)
+{
+ return find_first_bit(&randseed, MaxLevel) / 2;
+}
+
+void skiplist_insert(skiplist *l, skiplist_node *node, keyType key, valueType value, unsigned int randseed)
+{
+ skiplist_node *update[MaxNumberOfLevels];
+ skiplist_node *p, *q;
+ int k = l->level;
+
+ p = l->header;
+ do {
+ while (q = p->next[k], q->key <= key)
+ p = q;
+ update[k] = p;
+ } while (--k >= 0);
+
+ ++l->entries;
+ k = randomLevel(randseed);
+ if (k > l->level) {
+ k = ++l->level;
+ update[k] = l->header;
+ }
+
+ node->level = k;
+ node->key = key;
+ node->value = value;
+ do {
+ p = update[k];
+ node->next[k] = p->next[k];
+ p->next[k] = node;
+ node->prev[k] = p;
+ node->next[k]->prev[k] = node;
+ } while (--k >= 0);
+}
+
+void skiplist_delete(skiplist *l, skiplist_node *node)
+{
+ int k, m = node->level;
+
+ for (k = 0; k <= m; k++) {
+ node->prev[k]->next[k] = node->next[k];
+ node->next[k]->prev[k] = node->prev[k];
+ }
+ skiplist_node_init(node);
+ if (m == l->level) {
+ while (l->header->next[m] == l->header && l->header->prev[m] == l->header && m > 0)
+ m--;
+ l->level = m;
+ }
+ l->entries--;
+}
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index c9ec050bcf46..61603de4fa1e 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -131,8 +131,14 @@ static int __maybe_unused four = 4;
static unsigned long zero_ul;
static unsigned long one_ul = 1;
static unsigned long long_max = LONG_MAX;
-static int one_hundred = 100;
-static int one_thousand = 1000;
+static int __read_mostly one_hundred = 100;
+static int __read_mostly one_thousand = 1000;
+#ifdef CONFIG_SCHED_MUQSS
+extern int rr_interval;
+extern int sched_interactive;
+extern int sched_iso_cpu;
+extern int sched_yield_type;
+#endif
#ifdef CONFIG_PRINTK
static int ten_thousand = 10000;
#endif
@@ -305,7 +311,7 @@ static struct ctl_table sysctl_base_table[] = {
{ }
};
-#ifdef CONFIG_SCHED_DEBUG
+#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_MUQSS)
static int min_sched_granularity_ns = 100000; /* 100 usecs */
static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */
static int min_wakeup_granularity_ns; /* 0 usecs */
@@ -322,6 +328,7 @@ static int max_extfrag_threshold = 1000;
#endif
static struct ctl_table kern_table[] = {
+#ifndef CONFIG_SCHED_MUQSS
{
.procname = "sched_child_runs_first",
.data = &sysctl_sched_child_runs_first,
@@ -487,6 +494,7 @@ static struct ctl_table kern_table[] = {
.extra2 = &one,
},
#endif
+#endif /* !CONFIG_SCHED_MUQSS */
#ifdef CONFIG_PROVE_LOCKING
{
.procname = "prove_locking",
@@ -1059,6 +1067,44 @@ static struct ctl_table kern_table[] = {
.proc_handler = proc_dointvec,
},
#endif
+#ifdef CONFIG_SCHED_MUQSS
+ {
+ .procname = "rr_interval",
+ .data = &rr_interval,
+ .maxlen = sizeof (int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &one,
+ .extra2 = &one_thousand,
+ },
+ {
+ .procname = "interactive",
+ .data = &sched_interactive,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &zero,
+ .extra2 = &one,
+ },
+ {
+ .procname = "iso_cpu",
+ .data = &sched_iso_cpu,
+ .maxlen = sizeof (int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &zero,
+ .extra2 = &one_hundred,
+ },
+ {
+ .procname = "yield_type",
+ .data = &sched_yield_type,
+ .maxlen = sizeof (int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .extra1 = &zero,
+ .extra2 = &two,
+ },
+#endif
#if defined(CONFIG_S390) && defined(CONFIG_SMP)
{
.procname = "spin_retry",
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 5e77662dd2d9..3a115f145d95 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -190,8 +190,13 @@ int clockevents_tick_resume(struct clock_event_device *dev)
#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
+#ifdef CONFIG_SCHED_MUQSS
+/* Limit min_delta to 100us */
+#define MIN_DELTA_LIMIT (NSEC_PER_SEC / 10000)
+#else
/* Limit min_delta to a jiffie */
#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
+#endif
/**
* clockevents_increase_min_delta - raise minimum delta of a clock event device
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 0a426f4e3125..bdd0a5c1811e 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -829,7 +829,7 @@ static void check_thread_timers(struct task_struct *tsk,
tsk_expires->virt_exp = expires;
tsk_expires->sched_exp = check_timers_list(++timers, firing,
- tsk->se.sum_exec_runtime);
+ tsk_seruntime(tsk));
/*
* Check for the special case thread timers.
@@ -839,7 +839,7 @@ static void check_thread_timers(struct task_struct *tsk,
unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
if (hard != RLIM_INFINITY &&
- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
+ tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
/*
* At the hard limit, we just die.
* No need to calculate anything else now.
@@ -851,7 +851,7 @@ static void check_thread_timers(struct task_struct *tsk,
__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
return;
}
- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
+ if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
/*
* At the soft limit, send a SIGXCPU every second.
*/
@@ -1091,7 +1091,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
struct task_cputime task_sample;
task_cputime(tsk, &task_sample.utime, &task_sample.stime);
- task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
+ task_sample.sum_exec_runtime = tsk_seruntime(tsk);
if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
return 1;
}
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 2fce056f8a49..926ab73595a2 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -1478,7 +1478,7 @@ static unsigned long __next_timer_interrupt(struct timer_base *base)
* Check, if the next hrtimer event is before the next timer wheel
* event:
*/
-static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
+static u64 cmp_next_hrtimer_event(struct timer_base *base, u64 basem, u64 expires)
{
u64 nextevt = hrtimer_get_next_event();
@@ -1496,6 +1496,9 @@ static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
if (nextevt <= basem)
return basem;
+ if (nextevt < expires && nextevt - basem <= TICK_NSEC)
+ base->is_idle = false;
+
/*
* Round up to the next jiffie. High resolution timers are
* off, so the hrtimers are expired in the tick and we need to
@@ -1565,7 +1568,7 @@ u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
}
raw_spin_unlock(&base->lock);
- return cmp_next_hrtimer_event(basem, expires);
+ return cmp_next_hrtimer_event(base, basem, expires);
}
/**
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
index 9d402e7fc949..ba40ad4e6320 100644
--- a/kernel/trace/trace_selftest.c
+++ b/kernel/trace/trace_selftest.c
@@ -1045,10 +1045,15 @@ static int trace_wakeup_test_thread(void *data)
{
/* Make this a -deadline thread */
static const struct sched_attr attr = {
+#ifdef CONFIG_SCHED_MUQSS
+ /* No deadline on MuQSS, use RR */
+ .sched_policy = SCHED_RR,
+#else
.sched_policy = SCHED_DEADLINE,
.sched_runtime = 100000ULL,
.sched_deadline = 10000000ULL,
.sched_period = 10000000ULL
+#endif
};
struct wakeup_test_data *x = data;
--
2.17.1