You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gentoo-overlay/app-backup/tarsnap/files/tarsnap-1.0.40-strict-alias...

159 lines
5.0 KiB

https://github.com/Tarsnap/tarsnap/commit/ca40c06f290fb8298dc2e583303d45b58878f37b
https://github.com/Tarsnap/tarsnap/commit/4af6d8350ab53d0f1f3104ce3d9072c2d5f9ef7a
From 4af6d8350ab53d0f1f3104ce3d9072c2d5f9ef7a Mon Sep 17 00:00:00 2001
From: Graham Percival <gperciva@tarsnap.com>
Date: Fri, 1 Apr 2022 16:58:43 -0700
Subject: [PATCH] scrypt: Fix strict aliasing
The original scrypt code treated its data as blobs of bytes, accessing
them in whatever manner was convenient from time to time:
* as 32-bit words or vectors thereof for the purpose of the Salsa20/8 core
* in machine-word-sized chunks (aka. size_t) for block copy and xor operations
* as 32-bit words for the Integerify function.
This worked fine at the time, but newer compilers apply strict aliasing rules
which allow them to assume that e.g. data accessed as a uint32_t is not the
same as data accessed as a size_t, resulting in miscompilation.
Note that in recent versions of scrypt (after 2015-07-18; versions 1.2.0 and
later) such miscompilation should be detected by the built-in runtime testing.
To avoid aliasing problems, the generic scrypt code now operates on uint32_t
throughout while the SSE2-enabled scrypt code operates on __m128i throughout.
Experimentally, we found that memcpy() speeds up blkcpy() in the plain C
case, but slowed it down in the _sse2.c case (probably because memcpy
can make use of vector instructions internally, but cannot assume that
it will always have a multiple of 16 bytes, as we do).
--- a/lib/crypto/crypto_scrypt_smix.c
+++ b/lib/crypto/crypto_scrypt_smix.c
@@ -27,39 +27,32 @@
* online backup system.
*/
#include <stdint.h>
+#include <string.h>
#include "sysendian.h"
#include "crypto_scrypt_smix.h"
-static void blkcpy(void *, const void *, size_t);
-static void blkxor(void *, const void *, size_t);
+static void blkcpy(uint32_t *, const uint32_t *, size_t);
+static void blkxor(uint32_t *, const uint32_t *, size_t);
static void salsa20_8(uint32_t[16]);
static void blockmix_salsa8(const uint32_t *, uint32_t *, uint32_t *, size_t);
-static uint64_t integerify(const void *, size_t);
+static uint64_t integerify(const uint32_t *, size_t);
static void
-blkcpy(void * dest, const void * src, size_t len)
+blkcpy(uint32_t * dest, const uint32_t * src, size_t len)
{
- size_t * D = dest;
- const size_t * S = src;
- size_t L = len / sizeof(size_t);
- size_t i;
- for (i = 0; i < L; i++)
- D[i] = S[i];
+ memcpy(dest, src, len);
}
static void
-blkxor(void * dest, const void * src, size_t len)
+blkxor(uint32_t * dest, const uint32_t * src, size_t len)
{
- size_t * D = dest;
- const size_t * S = src;
- size_t L = len / sizeof(size_t);
size_t i;
- for (i = 0; i < L; i++)
- D[i] ^= S[i];
+ for (i = 0; i < len / 4; i++)
+ dest[i] ^= src[i];
}
/**
@@ -145,9 +138,9 @@ blockmix_salsa8(const uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint64_t
-integerify(const void * B, size_t r)
+integerify(const uint32_t * B, size_t r)
{
- const uint32_t * X = (const void *)((uintptr_t)(B) + (2 * r - 1) * 64);
+ const uint32_t * X = B + (2 * r - 1) * 16;
return (((uint64_t)(X[1]) << 32) + X[0]);
}
--- a/lib/crypto/crypto_scrypt_smix_sse2.c
+++ b/lib/crypto/crypto_scrypt_smix_sse2.c
@@ -36,34 +36,30 @@
#include "crypto_scrypt_smix_sse2.h"
-static void blkcpy(void *, const void *, size_t);
-static void blkxor(void *, const void *, size_t);
+static void blkcpy(__m128i *, const __m128i *, size_t);
+static void blkxor(__m128i *, const __m128i *, size_t);
static void salsa20_8(__m128i[4]);
static void blockmix_salsa8(const __m128i *, __m128i *, __m128i *, size_t);
-static uint64_t integerify(const void *, size_t);
+static uint64_t integerify(const __m128i *, size_t);
static void
-blkcpy(void * dest, const void * src, size_t len)
+blkcpy(__m128i * dest, const __m128i * src, size_t len)
{
- __m128i * D = dest;
- const __m128i * S = src;
size_t L = len / 16;
size_t i;
for (i = 0; i < L; i++)
- D[i] = S[i];
+ dest[i] = src[i];
}
static void
-blkxor(void * dest, const void * src, size_t len)
+blkxor(__m128i * dest, const __m128i * src, size_t len)
{
- __m128i * D = dest;
- const __m128i * S = src;
size_t L = len / 16;
size_t i;
for (i = 0; i < L; i++)
- D[i] = _mm_xor_si128(D[i], S[i]);
+ dest[i] = _mm_xor_si128(dest[i], src[i]);
}
/**
@@ -168,11 +164,18 @@ blockmix_salsa8(const __m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
* Note that B's layout is permuted compared to the generic implementation.
*/
static uint64_t
-integerify(const void * B, size_t r)
+integerify(const __m128i * B, size_t r)
{
- const uint32_t * X = (const void *)((uintptr_t)(B) + (2 * r - 1) * 64);
+ const __m128i * X = B + (2*r - 1) * 4;
+ uint32_t X0, X13;
- return (((uint64_t)(X[13]) << 32) + X[0]);
+ /* Get the first 32-bit element in X[0]. */
+ X0 = (uint32_t)_mm_cvtsi128_si32(X[0]);
+
+ /* Get the second 32-bit element in X[3]. */
+ X13 = (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(X[3], 4));
+
+ return (((uint64_t)(X13) << 32) + X0);
}
/**